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A différentes échelles de taille, on observe des mouvements collectifs dans les systèmes vi-
vants : moteurs moléculaires, biofilms de bactéries, bancs de poissons, nuées d’oiseaux... Les
ingrédients essentiels permettant l’émergence de tels mouvements coopératifs sont l’auto-
propulsion de chacun des agents constituant le système et les interactions entre les agents,
qui les poussent à progressivement s’aligner les uns avec les autres. Le modèle de Vicsek, in-
troduit en 1995, est un modèle central de la "matière active" – une branche de la physique
hors-équilibre qui s’intéresse notamment aux mouvements collectifs. L’objectif de ce projet
est, en partant du papier original de Vicsek et al. [Phys. Rev. Lett. 75, 1226 (1995)], de
simuler l’émergence de mouvements collectifs dans un système de spins en interaction, qui
se déplacent avec une vitesse de propulsion fixée, et qui interagissent avec leurs voisins avec
des paramètres variables.

1 Modèle et implémentation

On réalisera les simulations telles que décrites dans l’article de Vicsek et al. On considère une boîte carrée à
deux dimensions de taille L avec des conditions aux limites périodiques. A chacune des N particules on associe une
position x i et une vitesse vi , d’amplitude v et orientée dans une direction θi mesurée à partir d’un axe de référence.
La condition initiale est la suivante : les N particules sont placées au hasard dans la boîte, et les orientations de leurs
vitesses sont choisies aléatoirement dans l’intervalle [0,2π[. A chaque pas de temps (∆t = 1), la position de chaque
particule est mise à jour suivant :

x i(t + 1) = x i(t) + vi(t)∆t. (1)

La vitesse à l’instant t + 1 a une amplitude v et un angle θ (t + 1), déterminé grâce à la relation

θi(t + 1) = 〈θ (t)〉i,r +∆θ , (2)

où 〈θ (t)〉i,r désigne la moyenne des directions des particules (i incluse) contenues dans un cercle de rayon r et centré
sur i. La direction moyenne est donc donnée par l’angle arctan[〈sinθ (t)〉r/〈cosθ (t)〉r]. ∆θ est un nombre aléatoire
choisi avec une distribution uniforme dans l’intervalle [−η/2,η/2]. Ce terme représente donc un bruit, c’est-à-dire
l’effet de l’agitation thermique sur le système.

2 Observations

1. Phénoménologie. On pourra commencer par reproduire la phénoménologie du système. Générer quelques
trajectoires pour des paramètres où le système reste désordonné, et pour des paramètres où on observe des
mouvements collectifs. Ecrire un script python qui permet de visualiser des configurations du système.

2. Paramètre d’ordre. On définit le paramètre d’ordre va(t) =
1
N

�

�

�

∑N
i=1

vi(t)
v

�

�

�. Mesurer limt→∞ va(t) dans l’état

stationnaire et tracer cette quantité en fonction de η pour une densité ρ fixée, et en fonction de ρ pour un
bruit η fixé. Qu’observe-t-on?
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A simple model with a novel type of dynamics is introduced in order to investigate the emergence
of self-ordered motion in systems of particles with biologically motivated interaction. In our model
particles are driven with a constant absolute velocity and at each time step assume the average direction
of motion of the particles in their neighborhood with some random perturbation (g) added. We present
numerical evidence that this model results in a kinetic phase transition from no transport (zero average
velocity, ~v, (

= 0) to finite net transport through spontaneous symmetry breaking of the rotational
symmetry. The transition is continuous, since ~v, ~

is found to scale as (71, —g)t with p = 0.45.

PACS numbers: 87.10.+e, 64.60.—i

One of the most interesting aspects of many particle
systems is that they exhibit a complex cooperative behav-
ior during phase transition [1]. This remarkable feature
of equilibrium systems has been studied in great detail for
the last couple of decades leading to a deeper understand-
ing of processes which may take place in an assembly of
interacting particles. Concepts like scaling, universality,
and renormalization have resulted in a systematic picture
of a wide range of systems in physics [1,2].

Recently, there has been an increasing interest in the
rich behavior of systems which are far from equilibrium.
Processes such as aggregation, viscous fIows, or biologi-
cal pattern formation have been shown to involve scaling
of the related geometrical and dynamic quantities char-
acterizing these phenomena [3,4]. As a further similarity
with equilibrium systems, the existence of phase transition
type behavior has also been demonstrated in several inves-
tigations of growth processes [5—8]. These analogies with
the basic features of equilibrium systems have represented
a particularly important contribution to the understanding
of the complex behavior of nonequilibrium processes.

In this work we introduce a model with a novel type
of dynamics in order to investigate clustering, transport,
and phase transition in nonequilibrium systems where the
velocity of the particles is determined by a simple rule
and random fluctuations. The only rule of the model
is at each time step a given particle driven with a
constant absolute velocity assumes the average direction
of motion of the particles in its neighborhood of radius r
with some random perturbation added. We show using
simulations that, in spite of its simplicity, this model
results in a rich, realistic dynamics, including a kinetic
phase transition from no transport to finite net transport
through spontaneous symmetry breaking of the rotational
symmetry.

In this sense our model is a transport related, nonequi-
librium analog of the ferromagnetic type of models, with
the important difference that it is inherently dynamic: The

elementary event is the motion of a particle between two
time steps. Thus the analogy can be formulated as fol-
lows: The rule corresponding to the ferromagnetic inter-
action tending to align the spins in the same direction, in
the case of equilibrium models, is replaced by the rule of
aligning the direction of motion of particles in our model
of cooperative motion. The level of random perturbations
we apply are in analogy with the temperature.

Beyond the above aspects, the proposed model
is interesting because of possible applications in a
wide range of biological systems involving clus-
tering and migration. Biological subjects have the
tendency to move as other subjects do in their neigh-
borhood [9]. In addition to such trivial examples as
schools of fish, herds of quadrupeds, or Rocks of Hying
birds, our model can be applied to the less known phe-
nomena during bacterial colony growth [10]. There are
bacteria (e.g., a strain of Bacillus Subtilis) which exhibit
cooperative motion in order to survive under unfavorable
conditions. The present model, with some modifications,
is already capable of reproducing the main observed
features of the motion (collective rotation and llocking)
of bacteria [10]. Other biologically motivated, recent
theoretical investigations of clustering, aggregation, and
orientational order in systems with diffusing directed
objects have concentrated on the possible spatial patterns
arising from an integro-differential equation approach and
from cellular automata type models [11].

Furthermore, we expect that our model can be used
to interpret the results of experiments on clustering and
convection in a system of disks floating on air table
[12]. These experiments represent a physically motivated
possible application of the present model, since they
are being carried out in order to understand the How
of granular materials under specific conditions. We are
aware that two groups are working on developing models
similar to ours in order to interpret these air table
experiments [13].
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The actual simulations were carried out in a square
shaped cell of linear size L with periodic boundary
conditions. The particles were represented by points
moving continuously (off lattice) on the plane. We
used the interaction radius r as the unit to measure
distances (r = 1), while the time unit At = 1 was the
time interval between two updatings of the directions
and positions. In most of our simulations we used the
simplest initial conditions: (i) at time t = 0, N particles
were randomly distributed in the cell and (ii) had the
same absolute velocity v and (iii) randomly distributed
directions 0. the velocities (v;) of the particles were
determined simultaneously at each time step, and the
position of the ith particle updated according to

(a) ~ p q~&. ~ "„~ (b)

Here the velocity of a particle v; (r + 1) was constructed
to have an absolute value v and a direction given by
the angle 0(t + 1). This angle was obtained from the
expression

where (0(t))„denotes the average direction of the
velocities of particles (including particle i) being
within a circle of radius r surrounding the given par-
ticle. The average direction was given by the angle
arctan[(sin (0(t))„/(cos (0(t)))„]. In Eq. (2) 50 is a
random number chosen with a uniform probability from
the interval [—rI/2, g/2]. Thus the term 50 represents
noise, which we shall use as a temperaturelike variable.
Correspondingly, there are three free parameters for a
given system size: g, p, and v, where v is the distance
a particle makes between two updatings.

We have chosen this realization because of its simplic-
ity, however, there may be several more interesting alter-
natives of implementing the main rules of the model. In
particular, the absolute value of the velocities does not
have to be fixed, one can introduce further kinds of parti-
cle interactions and or consider lattice alternatives of the
model. In the rest of this paper we shall concentrate on
the simplest version, described above, and investigate the
nontrivial behavior of the transport properties as the two
basic parameters of the model, the noise g and the density

p = N/L, are varied. We used v = 0.03 in the simula-
tions we report on for the following reasons. In the limit
v ~ 0 the particles do not move and the model becomes
an analog of the well-known XY model. For v ~ ~ the
particles become completely mixed between two updates,
and this limit corresponds to the so-called mean-field be-
havior of a ferromagnet. We use v = 0.03 for which the
particles always interact with their actual neighbors and
move fast enough to change the configuration after a few
updates of the directions. According to our simulations,
in a wide range of the velocities (0.003 & v & 0.3), the
actual value of v does not affect the results.

FIG. l. In this figure the velocities of the particles are
displayed for varying values of the density and the noise. The
actual velocity of a particle is indicated by a small arrow, while
their trajectory for the last 20 time steps is shown by a short
continuous curve. The number of particles is N = 300 in each
case. (a) t = 0, L = 7, rj = 2.0. (b) For small densities and
noise the particles tend to form groups moving coherently in
random directions, here L = 25, ri = 0.1. (c) After some
time at higher densities and noise (L = 7, 71 = 2.0) the
particles move randomly with some correlation. (d) For higher
density and small noise (L = 5, rl = 0.1) the motion becomes
ordered. All of our results shown in Figs. 1 —3 were obtained
from simulations in which v was set to be equal to 0.03.

Va
1

Nv Pv, (3)

Figures 1(a)—1(d) demonstrate the velocity fields dur-

ing runs with various selections for the value of the pa-
rameters p and g. The actual velocity of a particle is in-
dicated by a small arrow, while their trajectory for the last
20 time steps is shown by a short continuous curve. (a) At
t = 0 the positions and the direction of velocities are dis-
tributed randomly. (b) For small densities and noise the
particles tend to form groups moving coherently in ran-
dom directions. (c) At higher densities and noise the par-
ticles move randomly with some correlation. (d) Perhaps
the most interesting case is when the density is large and
the noise is small; in this case the motion becomes or-
dered on a macroscopic scale and all of the particles tend
to move in the same spontaneously selected direction.

This kinetic phase transition is due to the fact that
the particles are driven with a constant absolute velocity;
thus, unlike standard physical systems in our case, the net
momentum of the interacting particles is not conserved
during collision. We have studied in detail the nature of
this transition by determining the absolute value of the
average normalized velocity
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of the entire system of particles as the noise and the
density were changed. This velocity is approximately
zero if the direction of the motion of the individual
particles is distributed randomly, while for the coherently
moving phase (with ordered direction of velocities) v, =
1 so that we can consider the average velocity as an order
parameter.

First we gradually decreased the amount of noise g in
cells of various sizes for a fixed density p and observed
a transition from a disorderly moving phase to a phase
with a coherent motion of the particles [Fig. 2(a)]. The
uncertainty of the data points is within the range of the
symbols except for runs carried out with 4000 and 10000
particles close to the transition. For these g values the
statistical errors estimated from five runs with different
initial conditions are in the range of 5% (resulting in an
overlap of the results for a limited number of zI values)
due to the slow convergence and large fluctuations. In
Fig. 2(b) we show how v, changes if the noise is kept
constant and the density is increased.

Quite remarkably, the behavior of the kinetic order pa-
rameter Ij, is very similar to that of the order parameter
of some equilibrium systems close to their critical point.
The strongest indication of a transition in our nonequilib-
rium model is the fact that as we go to larger system sizes
the region over which the data show scaling is increas-

ing [see Fig. 3(a)]. Only an extremely unusual crossover
could change this tendency. A plausible physical picture
behind our finding is the following: Since the particles
are diffusing, there is mixing in the system resulting in an
effective (long range) interaction radius.

Thus we can assume that in the thermodynamic limit
our model exhibits a kinetic phase transition analogous
to the continuous phase transition in equilibrium systems,
i.e.,

and

(4)

where P and 6 are critical exponents and rI, (p) and

p, (rI) are the critical noise and density (for L ~ ~),
respectively. We can determine p and 6 corresponding
to the rate of vanishing of the order parameter from
plotting ln v, as a function of ln([rI, (L) —rI]/zj, (L))
and ln([p —p, (L)]/p, (L)) for some fixed values
of p and ri, respectively (Fig. 3). For finite sizes
rj, (L) and p, (L) are L dependent; thus we used such
values of quantities for which the plots in Fig. 3 were
the straightest in the relevant region of noise or density
values. The slope of the lines fitted to the data can
be associated with the critical exponents for which we
obtained p = 0.45 ~ 0.07 and 6 = 0.35 ~ 0.06. The
errors in determining P and 6 are due to the uncertainties
in the (i) v, and the (ii) rI, (L) and p, (L) values. Since
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FIG. 2. (a) The absolute value of the average velocity
(v, ) versus the noise 7I in cells of various sizes for
a fixed density p. The symbols correspond to
N = 40, L = 3 1 + N = 100, L = 5 X N = 400, L =
10;6:N = 4000, L = 31.6; C': N = 10000, L = 50. In
(b) (for L = 20) we show how v, changes if the noise is kept
constant and the density is increased.
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FIG. 3. Dependence of lnv, on In([rj, (L) —rl]/tI, (L)) and
ln([p —p, (L)]/p, (L)). The slope of the lines fitted to the
data can be associated with the critical exponents P and B.
(a) is for p = 0 4, (b) is for L = 20 and rI = 2 0.
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the scaling plots in Fig. 3 depend sensitively on the
choice of the critical noise and density and our method of
determining their value is indirect (from the straightness
of the data sets), we give rather conservative estimates for
the errors of P and B.

We have carried out a finite size scaling analysis of
7i, (L) and obtained ri, (~) = 2.9 ~ 0.05 for p = 0.4
(note that the "infinite temperature" limit of our model
is zl, = 2') As. indicated, rl, depends on p, in fact, we
expect a phase diagram (a line of critical temperatures)
analogous to that of disordered ferromagnets, g, playing
the role of temperature, and p playing the role of the
density of spins. In this case P and 8 are expected
to have the same value. On the other hand, strong
crossover effects are likely to effect their actual values
in a finite size simulation. Although our estimates for
P and 6 are different, on the basis of our simulations
we cannot exclude the possibility (allowed by our error
bars) that they become equal in the thermodynamic limit.
However, the determination of the phase diagram and a
more precise calculation of the exponents of our new
model are outside of the scope of the present work,
which concentrates on demonstrating the main features of
a novel nonequilibrium system.

The emergence of cooperative motion in our model
has analogies with the appearance of spatial order in
equilibrium systems. This fact and the simplicity of
our model suggests that, with appropriate modifications,
the theoretical methods for describing critical phenomena
may be applicable to the present kind of far-from-
equilibrium phase transition. The kinetic phase transitions
which have been observed in surface growth models [5—
8] are both in analogy and different from the situation
described here. The similarity is in the scaling behavior
of an inherently nonequilibrium order parameter, while
the two kinds of processes are distinct from the point
of the driving force acting on the particles. Self-driven
particles are uncommon in physics, but they are typical in
biological systems, including live organisms and the so-
called "molecular motors", having attracted great interest
recently [14]. Transitions have been observed in traffic
models [15] consisting of particles (cars) which can also
be interpreted as self-driven particles.

There are interesting further variations of the model
investigated in this work. It is expected that taking
into account a hard core term in the interaction or
using semiperiodic or open boundary conditions results in
additional nontrivial effects. Our preliminary results [10]

indicate that a model with hard core repulsion and specific
boundary conditions can be successfully used to interpret
recent observations of coherent motions in geometrically
complex bacterial colonies growing on soft agar surfaces
[10,16—18].

The present research in part was supported by the
Hungarian Research Foundation Grant No. T4439, by a
grant from the German-Israeli Foundation for Scientific
Research and Development, and by the Program for
Alternative Thinking at Tel-Aviv University.

[1] H. E. Stanley, Introduction to Phase Transitions and
Critical Phenomena (Oxford University Press, Oxford,
1971).

[2] See, e.g. , S.-k. Ma, Statistical Mechanics (World Scien-
tific, Singapore, 1985); Modern Theory of Critical Phe
nomena (Benjamin, New York, 1976).

[3] P. Meakin, in Phase Transitions and Critical Phenomena,
edited by C. Domb and J. Lebowitz (Academic Press, New
York, 1987), Vol. 12.

[4] T. Vicsek, Fractal Growth Phenomena (World Scientific,
Singapore, 1992).

[5] Surface Disordering, edited by R. Jullien, J. Kertesz,
P. Meakin and D. Wolf (Nova Science, New York, 1992).

[6] J. Kertesz and D. E. Wolf, Phys. Rev. Lett. 62, 2571
(1989).

[7] N. Martys, M. Cieplak, and M. O. Robbins, Phys. Rev.
Lett. 66, 1058 (1991).

[8] Z. Csahok, K. Honda, E. Somfai, M. Vicsek, and
T. Vicsek, Physica (Amsterdam) 200A, 136 (1993).

[9] D. P. O' Brien, J. Exp. Mar. Biol. Ecol. 128, 1 (1989).
[10] E. Ben-Jacob, A. Czir6k, I. Cohen, O. Shochet, A. Ten-

enbaum, and T. Vicsek (to be published).
[11] L. Edelstein-Keshet and G. B. Ermentrout, J. Math. Biol.

29, 33 (1990).
[12] J. Lemaitre, A. Gervois, H. Peerhossaini, D. Bideau, and

J.P. Troadec, J. Phys. 23, 1396 (1990).
[13] H. J. Herrmann (private communication) .
[14] See, e.g. , R. D. Astumian and M. Bier, Phys. Rev. Lett.

72, 1766 (1994).
[15] See, e.g. , K. Nagel and H. J. Herrmann, Physica (Amster-

dam) 199A, 254 (1993), and references therein.
[16] E. Ben-Jacob, H. Shmueli, O. Shochet, and A. Tenen-

baum, Physica (Amsterdam) 187A, 378 (1992).
[17] E. Ben- Jacob, I. Cohen, O. Shochet, A. Tenenbaum,

A. Czir6k, and T. Vicsek, Nature (London) 368, 46
(1994).

[18] T. Matsuyama, R. M. Harshey, and M. Matsushita, Frac-
tals 1, 302 (1993).

1229


	Modèle et implémentation
	Observations

