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We study the dynamics of a tracer particle (TP) on a comb lattice populated by randomly moving hard-
core particles in the dense limit. We first consider the case where the TP is constrained to move on the
backbone of the comb only. In the limit of high density of the particles, we present exact analytical results
for the cumulants of the TP position, showing a subdiffusive behavior ∼t3=4. At longer times, a second
regime is observed where standard diffusion is recovered, with a surprising nonanalytical dependence of
the diffusion coefficient on the particle density. When the TP is allowed to visit the teeth of the comb, based
on a mean-field-like continuous time random walk description, we unveil a rich and complex scenario with
several successive subdiffusive regimes, resulting from the coupling between the geometrical constraints of
the comb lattice and particle interactions. In this case, remarkably, the presence of hard-core interactions
asymptotically speeds up the TP motion along the backbone of the structure.
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The subdiffusive motion of tracers in crowded media,
e.g., biological cells, is widespread. Among the micro-
scopic scenarios producing this sublinear growth with time
of the mean square displacement (MSD), geometric con-
straints related to the complexity of the environment play
an important role [1,2]. In this context, the comb model (see
Fig. 1), where particles can jump in the x direction only
when y is zero, has attracted considerable attention because
of its simplicity and ability to reproduce subdiffusive
behaviors of disordered systems [3].
Comblike structures were introduced to model diffusion

in fractals like percolation clusters, with the backbone and
teeth of the comb representing the quasilinear structure and
dangling ends of percolation clusters [4]. The particle can
spend a long time exploring a tooth, resulting in a sub-
diffusive motion along the backbone: hx2ðtÞi ∝ tα; α ¼ 1=2.
Numerous results have since been obtained for this model
[5–12], including the determination of the occupation-time
statistics [13] and of mean first-passage times between two
nodes [14] and the case of fractional Brownian walks [15].
In parallel, the comb model has been invoked to account

for transport in real systems like spiny dendrites [11],
diffusion of cold atoms [16] and diffusion in crowded
media [17]. However, all existing studies focused on single-
particle diffusion, and interactions between particles have
up to now been completely left aside. As an elementary
model of particles under short-range repulsive forces, we
consider excluded-volume interactions (EVIs) and focus on
their impact on tracer dynamics on comblike structures.
From a theoretical perspective, lattice systems of inter-

acting particles represent a prototypical model that has
generated a huge number of works in the physical [18,19]
and mathematical literature [20]. The effect of EVIs on
homogeneous lattices is well known [3]. In dimension

d ≥ 2, tracer diffusion remains normal, with a diffusion
coefficient resulting from many-body interactions [21]. In
“single-file” geometry, where particles cannot bypass
each other, the impact of EVIs is stronger, resulting in a
subdiffusive behavior hx2ðtÞi ∝ tβ, β ¼ 1=2 [22–27]. In
this context, determining the effect of EVIs on systems with
geometrical constraints appears to be an important ques-
tion which has not received much attention. Notable
exceptions are Ref. [28], where two particles only are
involved, Refs. [29–31], which consider single-file models
for Brownian and subdiffusive motion, Ref. [32], where
mobility in single-file systems was shown to be increased
by disorder, and Ref. [33], where tracer diffusion on fractal
aggregates was studied numerically and found not to be
modified by EVIs. In this Letter, we show that, in contrast,
EVIs deeply modify tracer diffusion on comblike struc-
tures. Focusing on the high density limit, we show
analytically that the dynamics displays several regimes

FIG. 1 (color online). Comb model. The x axis is the backbone,
whereas the orthogonal lines are the teeth. Jump rules of the
particles in the case when the TP (in red) is restricted to the
backbone are given.
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of subdiffusion. Surprisingly, EVIs are shown to asymp-
totically speed up tracer diffusion along the backbone.
Model.—We consider the two-dimensional comb C2,

which is a subgraph of Z2 obtained by removing all of the
lines parallel to the x axis, except for the x axis itself. This
lattice is populated by a density ρ of hard-core particles
performing nearest-neighbor symmetric random walks. We
add a tracer particle (TP) at the origin and focus on its
dynamics in the dense limit, where the vacancy density
ρ0 ¼ 1 − ρ ≪ 1. In this limit, it is convenient to follow the
vacancy dynamics instead of the dynamics of the particles.
We assume that, at each time step, each vacancy exchanges
its position with one of the neighboring particles with jump
probabilities that depend on the position on the lattice; see
the Supplemental Material [34] for their explicit definition.
Case of a TP restricted to the backbone.—We first

assume that the TP is constrained to move on the backbone.
This particular case is important for several reasons. (i) It
mimics the case where the tracer is different from the bath
particles, and it cannot visit the teeth. (ii) It appears as an
extension of the famous single-file geometry in which, due
do the possibility for the bath particles to visit the teeth, the
particles can bypass each other. An interesting question is
to determine whether the dynamics is still anomalous in this
case and, if so, with which exponent. (iii) Finally, solving
this auxiliary problem will allow us to determine the
dynamics of the TP in the general case where the TP
can access the teeth of the comb.
Let Xt be the position of the TP along the backbone at

time t, κðnÞðtÞ the cumulants of order n of Xt, and ΨtðkÞ≡
lnheikXti ¼ ln ½ ~PtðkÞ� the cumulant generating function
(CGF). Here, ~PtðkÞ ¼

P
Xe

ikXPtðXÞ is the Fourier trans-
form of the probability PtðXÞ of finding the TP at position X
at time t. Following the method developed in Refs. [37,38]
and recently used to study driven diffusion in one-
dimensional geometries [39], we first consider the case

where there is a single vacancy on the lattice. Let Pð1Þ
t ðXjZÞ

be the probability of finding the TP at position X at time t
knowing that the vacancy started from site Z. Summing over
all the passages of the vacancy to the TP location, one gets

Pð1Þ
t ðXjZÞ

¼ δX;0

�
1−

Xt

j¼0

Fjð0jZÞ
�
þ
Xþ∞

p¼1

Xþ∞

m1;m2;…;mp¼1

×
Xþ∞

mpþ1¼0

δm1þ…þmpþ1;tδX;σðZÞþð−1Þpþ1

2

×

�
1−

Xmpþ1

j¼0

Fjð0jσðZÞð−1Þpe1Þ
�

×Fmp
ð0jσðZÞð−1Þpþ1e1Þ…Fm2

ðZj−σðZÞe1ÞFm1
ð0jZÞ;

ð1Þ

where Ftð0jZÞ is the probability for the vacancy to reach the
origin for the first time at time t, knowing that it started from
site Z, and e1 is the unit vector in the x direction and
σðZÞ≡ sgnðZ · e1Þ. The first term on the rhs of Eq. (1)
represents the event that, at time t, the TP has not been
visited by any vacancy, while the second one results from a
partition both on the number of visits p and waiting timesmi
between visits of the TP by the vacancy. Computing the
generating function associated with this propagator
p̂�1ðX; ξÞ≡ P̂ð1ÞðXj � e1; ξÞ, where ϕ̂ðξÞ denotes the
discrete Laplace transform ϕ̂ðξÞ≡P∞

t¼0 ϕtξ
t, and noticing

that for symmetry reasons F̂ð0je1; ξÞ ¼ F̂ð0j − e1; ξÞ≡ F̂1,
one gets

p̂�1ðX; ξÞ ¼
δX;0ð1 − F̂1Þ þ δX;�1F̂1ð1 − F̂1Þ

ð1 − F̂1
2Þð1 − ξÞ : ð2Þ

Note that, in that case of a single vacancy, the TP is localized
to the sites 0;�1.
We then study the case where the concentration of

vacancies ρ0 is finite but small. We start from a finite
lattice of N sites and M vacancies with initial positions
Z1;…;ZM, so that M ¼ ρ0N. The probability PtðXjfZjgÞ
to find the TP at position X is given by

PtðXjfZjgÞ ¼
X

Y1;���;YM

δX;Y1þ���þYM
PtðfYjgjfZjgÞ; ð3Þ

where PtðfYjgjfZjgÞ is the probability that at time t the TP
moved a distance Yj due to its interactions with the jth
vacancy. To leading order in ρ0, the vacancies contribute
independently to the displacement of the TP, so that, in

Fourier variable, ~PðMÞ
t ðkÞ ¼ ½ ~Pð1Þ

t ðkÞ�M, where ~PðjÞ
t ðkÞ is the

Fourier transform of the probability distribution to find the
TP at position X at time t, knowing that there are j
vacancies on the lattice, and averaged over the initial
position of the vacancies, which is assumed to be uniform.
As shown below, the choice of the initial distribution may
have a dramatic effect on the behavior of the TP.
Taking the thermodynamic limit N;M → ∞ with fixed

ρ0 ¼ M=N and using Eq. (2), we get the Fourier Laplace
transform of the CGF

Ψ̂ðk; ξÞ ∼
ρ0→0

− 2ρ0
HðξÞ

ð1 − ξÞð1þ F̂1Þ
ð1 − cos kÞ; ð4Þ

where we defined HðξÞ≡P∞
x¼1

P∞
y¼−∞F̂ð0jx;y;ξÞ, and

we used the symmetry relation
P

Z≠0F̂
�ð0je1jZÞ ¼P

Z≠0F̂
�ð0j − e1jZÞ. The determination of the CGF thus

amounts to the calculation of the quantities HðξÞ and F̂1,
which is detailed in the Supplemental Material [34].
Expanding Ψ̂ðk; ξÞ in powers of k from Eq. (4), focusing

on the large time limit ξ → 1−, and using a Tauberian
theorem [40], we get the exact expression (see the
Supplemental Material [34])
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lim
ρ0→0

κð2nÞðtÞ
ρ0

∼
t→∞

1

25=4Γð7=4Þ t
3=4: ð5Þ

All nonzero cumulants being equal, PtðXÞ is a Skellam
distribution [41]. In particular, the rescaled position Xt=t3=8

is asymptotically normally distributed. Moreover, as
expected, EVIs slow down the motion of the TP and result
in an exponent 3=4, intermediate between a “normal”
diffusion exponent, and the single-file diffusion exponent
1=2 [42]. The analytical predictions for the cumulants
are successfully compared to results obtained from
Monte Carlo simulations at intermediate times (see
Fig. 2), while at long times a crossover towards a standard
diffusive behavior is observed. We present below a theo-
retical argument that accounts for this intriguing behavior.
The key point is that the above results are derived by

taking the limit ρ0 → 0 before t → ∞, and, to leading order,
the TP does not move before being reached by a vacancy. In
fact, the TP diffuses due to its interactions with the other
vacancies. Therefore, in the reference frame of the TP, each
vacancy experiences an additional symmetric jump prob-
ability in the x direction, denoted by Dðρ0Þ, even on the
teeth. Thus, the vacancies can jump between teeth (with a
vanishing probability when ρ0 → 0) and their motion is
effectively two dimensional. Qualitatively, the problem is
2D and regular diffusion is expected at large times.
Quantitatively, the approach developed previously can be
extended (see the Supplemental Material [34]), yielding

κ̂ð2ÞðξÞ ¼ −2ρ0
Σðξ; ρ0ÞðF̂�

1 − F̂�
−1 − 1Þ

ðF̂�
1 − 1þ F̂�

−1ÞðF̂�
1 þ 1 − F̂�

−1Þ
: ð6Þ

Here, F̂�
�1 ≡ F̂�ð0je1je�1; ξ; ρ0Þ and Σðξ; ρ0Þ≡P

Z≠0F̂
�ð0je1jZ; ξ; ρ0Þ, with F�

t ð0je1jZ; ρ0Þ being the prob-
ability for a vacancy to reach the origin for the first time at

time t knowing that it was at site e1 at time t − 1 and that it
started from site Z. Relying on renewal-type equations,
the first-passage time densities F̂� are related to the
propagators of the vacancies’ random walk, which are
evaluated extending the method presented in Ref. [43] to
treat diffusion on inhomogeneous lattices (see the
Supplemental Material [34]). It is found that

lim
t→∞

κð2ÞðtÞ
t

∝
ρ0→0

ρ0
ffiffiffiffiffiffiffiffiffiffiffiffi
Dðρ0Þ

p
ln

1

Dðρ0Þ
: ð7Þ

This equation defines the diffusion coefficient Dðρ0Þ ¼
limt→∞½κð2ÞðtÞ=2t� self-consistently when ρ0 → 0 and
finally yields the variance in the ultimate regime:

lim
t→∞

κð2ÞðtÞ
t

∝
ρ0→0

ρ0
2

�
ln

1

ρ0

�
2

: ð8Þ

These results thus show that the limits ρ0 → 0 and t → ∞
do not commute [44]. However, due to a subtle coupling
between EVIs and the geometrical constraints of the comb
geometry, the diffusive regime displays a nonanalytical
dependence on the vacancy density, checked numerically in
Fig. 4 of the Supplemental Material [34]. This is markedly
different from the case of homogeneous lattices where a
linear behavior with ρ0 is found [37]. In addition, the
comparison between Eqs. (5) and (8) shows that the
crossover time between the two regimes behaves like
t× ∼ ½ρ0 lnðρ0Þ�−4, which can be very large for dense
systems. Thus, the subdiffusive behavior of the first regime
is long-lived and potentially observable in real systems
[46]. We now consider several extensions.
Influence of the initial conditions.—The previous results

were obtained for initially uniformly distributed vacancies.
We now assume that they are initially located only on the
backbone, with linear density ρlin0 defined as the number of
vacancies divided by the backbone length. Averaging over
this initial distribution in Eq. (4), it is found that (see the
Supplemental Material [34])

κð2nÞðtÞ ∼
ρlin
0
→0

ρlin0
27=4Γð5=4Þ t

1=4: ð9Þ

Consequently, the cumulants now grow as t1=4. This
analytical prediction is successfully confronted to simu-
lations (see the inset of Fig. 2). This spectacular slowdown
of the dynamics with respect to the uniform initial con-
ditions is compatible with Eq. (5), where now ρ0 strictly
vanishes. Interestingly, in this case, t× → ∞, so that there is
no crossover to a diffusive regime.
d-dimensional comb.—The previous results can also be

generalized to the case of a d-dimensional comb Cd
[3,50,51], defined recursively: starting from C1 (a one-
dimensional lattice), Cd is obtained from Cd−1 by attaching

FIG. 2 (color online). Variance rescaled by ρ0 computed from
Monte Carlo simulations of vacancy dynamics. The line repre-
sents the analytical result (5). (Inset) Case where all vacancies are
initially placed on the backbone [the line represents Eq. (9)].

PRL 115, 220601 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

27 NOVEMBER 2015

220601-3



at each point a two-way infinite path (see the figure in the
Supplemental Material [34]). It is found that, for uniform
initial conditions, the even cumulants all behave like

lim
ρ0→0

κð2nÞðtÞ
ρ0

∝
t→∞

t1−1=2
d
; ð10Þ

and eventually cross over to a diffusive regime for d ≥ 2.
Note that in the case d ¼ 1, single-file subdiffusion
κð2nÞðtÞ ∝ ffiffi

t
p

is recovered.
Recalling that single-file diffusion was shown to be a

realization of a fractional Brownian motion with Hurst
exponent 1=4 [52], we conjecture that tracer diffusion in a
crowded d-comb with ρ0 → 0 is more generally a realiza-
tion of a fractional Brownian motion of Hurst expo-
nents H ¼ ð2d − 1Þ=2dþ1.
Finally, as for the effect of initial conditions, we find that,

if the vacancies are initially placed only on the back-
bone, limρ0→0κ

ð2nÞðtÞ=ρ0 ∝
t→∞

t1=2
d
.

Case of a TP visiting the teeth.—We finally come back to
the original problem of a tracer on a crowded 2-comb,
where the TP is allowed to visit the teeth. The displacement
of the TP along the backbone can be analyzed in a mean-
field description that decouples the motion of the TP in a
tooth from the dynamics of other bath particles as a
continuous time random walk, whose waiting time distri-
bution ψðtÞ describes the time the TP spends on a tooth of
the crowded comb. Noting that the motion of the TP along a
tooth is close to a single-file motion, we expect that the
transverse MSD behaves like hy2ðtÞi ∝ ffiffiffiffiffiffi

ρ20t
p

[24] in the
dense limit. In turn, this leads to two different regimes for
ψðtÞ: for t ≪ t×;1 ≡ 1=ρ20, hy2ðtÞi ≪ 1, the TP has not had
time to explore a tooth because of the other bath particles,
and the mean time spent on the tooth is finite; for t ≫ t×;1,
ψðtÞ ∝ 1=tμ, with μ ¼ 7=4, as obtained in Refs. [53,54] and
checked numerically (see the inset of Fig. 3).
The MSD hX2i of the TP along the backbone is then

related to the MSD κð2Þ of the TP restricted to the backbone
by the standard Montroll-Weiss relation [40]:

dhX2iðξÞ ¼ 1 − ψ̂ðξÞ
1 − ξ

cκð2Þ(ψ̂ðξÞ): ð11Þ

Combining the two temporal behaviors of κð2ÞðtÞ deter-
mined previously with those of ψðtÞ, we finally obtain three
nontrivial regimes:

hX2ðtÞi ∝

8>><
>>:

t3=4 if t ≪ t×;1;

t3=4ðμ−1Þ ¼ t9=16 if t×;1 ≪ t ≪ t×;2;

tμ−1 ¼ t3=4 if t ≫ t×;2;

ð12Þ

where t×;2 is a second crossover time (whose dependency
on ρ0 is not provided by our approach) [55]. The

comparison with numerical simulations shown in Fig. 3
reveals that (i) three regimes with expected crossover time
t×;1 are indeed observed; (ii) the exponents of the two first
are in good agreement with our analytical prediction (12);
(iii) the increase of hX2ðtÞi observed in the last regime is in
qualitative agreement with Eq. (12), but the quantitative
determination of the corresponding exponent would require
more extensive simulations. Remarkably, it is found that,
asymptotically, the dynamics of the TP along the backbone
is faster than in the absence of bath particles, where
hX2ðtÞi ∝ t1=2. In other words, the motion of the TP is
accelerated along the backbone by EVIs (see the top inset
of Fig. 3). A similar effect was obtained in Ref. [32], where
the mobility of a single-file interacting system was shown
to be increased by disorder; however, in Ref. [32], the
speedup is due to disorder and only occurs at intermediate
times. The surprising behavior found here results from two
competing effects quantified by our approach: hard-core
interactions hinder the motion of the TP along the backbone
but also reduce the time lost in the teeth.
Our results show that the combined effect of geometric

constraints and interactions produces intriguing behaviors.
They could be relevant in different fields where such
ingredients are present, like in microfluidics [56], and
for transport in biological systems—e.g., in microtubules
[57] or in dendritic spines [58].

The authors acknowledge financial support from the
ERC Grant No. FPTOpt-277998.

FIG. 3 (color online). Variance of the TP visiting the teeth, for
different values of ρ0. The collapse of the curves is obtained by
rescaling time by t×;1 ¼ 1=ρ20, predicted by our analytical
approach, and the variance by ργ0 with γ ≃ 0.62, numerically
obtained. The plateau at intermediate times confirms the pre-
diction of Eq. (12). For ρ0 ≤ 10−3 the reported results are
obtained via simulations of vacancy dynamics, while for ρ0 >
10−3 via particle dynamics (see the Supplemental Material [34]).
(Top inset) Comparison with the MSD along the backbone of a
free particle. (Bottom inset) Distribution of the time spent by the
TP on the teeth from simulations.
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