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Abstract.  We study the position of a biased tracer particle (TP) in a bath of 
hardcore particles moving on a lattice of arbitrary dimension and in contact with 
a reservoir. Starting from the master equation satisfied by the joint probability 
of the TP position and the bath configuration and resorting to a mean-field-
type approximation, we presented a computation of the fluctuations of the TP 
position in a previous publication (Bénichou et al 2013 Phys. Rev. E 87 032164). 
Counter-intuitively, on a one-dimensional lattice, the diusion coecient of the 
TP was shown to be a nonmonotonic function of the density of bath particles, 
and reaches a maximum for a nonzero value of the density. Here, we (i) give the 
details of this computation and oer a physical insight into the understanding 
of the nonmonotonicity of the diusion coecient; (ii) extend the mean-field-
type approximation to decouple higher-order correlation functions, and obtain 
the evolution equation  satisfied by the cumulant generating function of the 
position of the TP, valid in any space dimension. In the particular case of 
a one-dimensional lattice, we solve this equation and obtain the probability 
distribution of the TP position. We show that the position rescaled by its 
fluctuations is asymptotically distributed according to a Gaussian distribution 
in the long-time limit.

Keywords: driven diusive systems (theory), stochastic particle dynamics 
(theory), diusion
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1.  Introduction

1.1. Context

Studying the dynamics of an active particle or a particle submitted to an external 
force travelling in a crowded environment is a frequent problem in physics and in biol-
ogy. Dierent examples are found in biophysics, when one considers molecular motors, 
motile living cells or bacteria [1, 2], or in the study of biased intruders in granular 
systems [3] or colloidal suspensions [4]. The determination of the dynamics of this 
tracer particle (TP) is consequently an important question, with dierent applications. 
In particular, new experimental tools allow the study of a medium using a microscopic 
probe particle submitted to an external force. This field of research, commonly known 
as active microrheology, has been applied to dierent systems in past decades, among 
which are biological cells [5, 6], complex fluids [7, 8] and colloidal suspensions [4, 9].

From a theoretical point of view, the diculty lies in the modeling of the environ-
ment of the tracer particle (TP), which is constituted of a large number of interacting 
bath particles. In most analytical approaches, the evolution of the position of the TP is 
studied with some eective description of the bath of particles [10], which do not take 
into account the correlations between the position of the TP and the density profiles 
of the surrounding bath. In the situation where the TP and the bath particles have 
comparable sizes, the response of the probe to the external forcing, and in particular its 
fluctuations, cannot be accounted for correctly with an eective treatment.

Here, we study the diusion of a driven tracer in a lattice gas of hardcore particles. 
This minimal model explicitly takes into account the bath dynamics: the driven TP 
performs a biased nearest-neighbor random walk, in a bath of particles performing 
symmetric nearest-neighbor random walks, with the restriction that each site is occu-
pied by at most one particle. We assume that the lattice is in contact with a reservoir 
of particles, so that the bath particles present on the lattice may desorb back to the 
reservoir, and particles from the reservoir may adsorb onto vacant lattice sites. This 
so-called Langmuir kinetics is relevant to describing situations where a gas or a vapor 
is brought into contact with a solid surface, on which the gas particles may form an 
adsorbed layer. The transport properties of the adsorbed particles have been shown 
to control many dierent processes, such as the spreading of molecular films on solid 
surfaces [11] or dewetting [12, 13]. The particular case where the Langmuir kinetics is 
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Appendix F. Algorithm and numerical methods	 50

Appendix G. Range of parameters for which KK 11 22> / 	 52

References	 53

http://dx.doi.org/10.1088/1742-5468/2015/11/P11016


Distribution of the position of a driven tracer in a hardcore lattice gas

4doi:10.1088/1742-5468/2015/11/P11016

J. S
tat. M

ech. (2015) P
11016

coupled to a totally asymmetric exclusion process was investigated theoretically [14, 
15], and has been shown to be relevant to describe the directional motion of molecular 
motors on a cytoskeletal filament, with random attachment and detachment of the 
motors [16, 17].

Studying the transport properties of a biased TP in a hardcore lattice gas is actu-
ally a complex N-body problem. In the situation where the density of bath particles ρ 
is very high and where the number of particles on the lattice is conserved, the problem 
can be treated exactly to obtain results at leading order in ρ−1( ) [18–21]. For an arbi-
trary density of particles, exact results were established concerning the mean position 
of the TP in the one-dimensional situation [22], and concerning the validity of the 
Einstein relation [23]. The situation where the lattice is populated by an arbitrary den-
sity of particles and where it is in contact with a reservoir of particles was addressed by 
resorting to a mean-field-type approximation consisting of the decoupling of relevant 
correlation functions, allowing the computation of the mean position of the TP and of 
the bath density profiles in the long-time limit, in the case of a one-dimensional lat-
tice [24] and for lattices of higher dimension [25–28]. Numerical simulations sampling 
exactly the master equation of the problem revealed the accuracy of the decoupling 
approximation in a wide range of parameters. The situation where the bath particles 
are fixed and can appear and disappear with prescribed rates, known as dynamical 
percolation [29], was also considered [30].

More recently, by extending the decoupling approximation initially proposed to 
study the mean position of the TP, its fluctuations have been studied [31]. An evolution 
equation for the fluctuations of the TP on a lattice of arbitrary dimension was obtained. 
This equation was solved explicitly in the case of a one-dimensional lattice, and in the 
stationary limit. The analysis of the solutions revealed a striking feature of the diusion 
coecient: in a wide range of parameters, it is shown to be a nonmonotonic function of 
the density of particles on the lattice. Counter-intuitively, the diusion coecient of the 
TP can then be enhanced by the presence of bath particles in its environment.

Recently, this nonmonotonicity was also observed in the situation where the TP is 
dragged in a bath of soft particles [32, 33], and then appears to be a generic feature of 
biased intruders in crowded environments.

1.2. Main results of this paper and overview

In this paper, we first give a detailed computation of the results presented in [31]: we 
establish the evolution equation  of the fluctuations of the TP position in arbitrary 
dimension under the decoupling approximation, and solve it in the case of a one-
dimensional lattice. We show that the nonmonotonicity of the diusion coecient with 
respect to the density of particles on the lattice is correlated to a nonmonotonicity of 
some cross-correlation functions with respect to the distance to the TP.

The main result of this paper is the following: we go one step further and general-
ize the mean-field-type approximation in order to calculate the cumulant generating 
function of the position of the TP, and therefore its complete probability distribution. 
Denoting by Xt the position of the TP, by = ⋅X eXt t 1 its projection along the direction 

of the bias, and defining the cumulant generating function Ψ ≡u t; ln e uXi t( ) ⟨ ⟩, we obtain 
in the long-time limit

http://dx.doi.org/10.1088/1742-5468/2015/11/P11016
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where νp  is the jump probability of the TP in the direction ν of the lattice, τ is its char-
acteristic jump time, σ is the lattice spacing and ηr is the occupation number at site r. 

The evolution equations for the correlation functions η= +� ( ) ⟨ ⟩ ⟨ ⟩w u t; e / er X r
uX uXi it

t

t  are 

obtained using an extension of the mean-field-type approximation proposed to study 
the mean and fluctuations of the position of the TP. This result is given by equa-

tions (70) and (71), where the quantities η= +( ) ⟨ ⟩k tr X rt
 are the density profiles in the 

reference frame of the TP and are the solutions of equations (15) and (16). The equa-
tions satisfied by the correlation functions �w u t;r( ) are solved in the particular case of a 
one-dimensional lattice, and we compute the probability distribution of the position of 
the TP. We show that all the cumulants of the TP position scale as t.

We also consider the random variable obtained by rescaling the position of the TP 
by t . For this random variable, all the cumulants of order greater than 2 vanish in the 
long-time limit, which shows that the position of the TP is asymptotically Gaussian.

The article is organized as follows. In section 2, we present the model and give the 
master equation governing the joint probability of the position of the TP and of the 
bath particles configuration. In section 3, we give the evolution equations of the first 
two cumulants. These equations involve the density profiles around the TP and some 
tracer-bath cross correlation functions, whose evolution equations are explicitly given 
in a closed form by resorting to a mean-field-type approximation. In section 4, we gen-
eralize this approximation in order to obtain a closed set of equations for the cumulant 
generating function of the TP position. These equations are valid in arbitrary dimen-
sion, and they give in principle the whole probability distribution of the TP position. 
As a particular case, we also obtain the equation satisfied by the third cumulant of 
the distribution. In section 5, we solve the equations obtained under the decoupling 
approximation in the particular case of a one-dimensional lattice, and then obtain 
explicit expressions for the first three cumulants, as well as an implicit determination of 
the cumulant generating function. In section 6, these analytical solutions are compared 
with results from Monte Carlo numerical simulations that exactly sample the master 
equation. We summarize our results and give an outlook in section 7.

2. Model and master equation

2.1. Model

We consider a d-dimensional hypercubic lattice (we denote its spacing by σ) in contact 
with a reservoir of particles (see figure 1). We adopt a continuous-time description of 
the system. We assume that the particles in the reservoir adsorb onto empty lattice 

http://dx.doi.org/10.1088/1742-5468/2015/11/P11016
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sites at a fixed rate τf / *. The particles adsorbed on the lattice desorb back to the res-
ervoir with a rate τg/ *. The adsorbed particles perform symmetric nearest-neighbor 

random walks, and jump to any of the 2d neighboring sites with a rate τd1/ 2 *( ). All 
the particles present on the lattice interact with a hardcore exclusion rule, such that 
each lattice site is occupied by at most one particle.

We introduce the occupation variable ηr, which takes two values: 1, if the site r 
is occupied by an adsorbed particle, and 0 otherwise. The mean density of the bath 
particles, ηr⟨ ⟩, is equal to ρ = +f f g/( ) in the long-time limit. However, the number of 
bath particles adsorbed on the lattice is not constant. The case where the number of 
particles on the lattice is conserved can be retrieved by taking the limits f 0→  and g 0→  
with a fixed value of the density ρ = +f f g/( ) .

We also introduce a tracer particle (TP). The TP cannot desorb from the lattice 
and it is submitted to an external force, such that it preferentially jumps in the direc-
tion of the unit vector e1. We denote by Xt the position of the TP at time t. The tracer 
jumps from Xt to + νX et  with rate τνp /  where >νp 0 are arbitrary constants. For sim-
plicity, we will use the notation e e≡ −ν ν− . In other words, the jump rate of the tracer 
in direction ν is τνp / . The equations presented below and their solutions are valid for 
any choice of the jump probabilities νp . However, it can be convenient to assume that 
the bias originates from an external force =F eF 1, so that the jump probability in 
direction ν is written

=
∑

ν

β

µ

β

⋅

∈ ± ±

⋅

ν

µ

{ }

p
e

e

F e

F e

d1,...

1
2

1
2� (3)

where β = k T1/ B( ) is the inverse temperature, and will be taken as equal to one. Note 
that this choice of νp  fulfils the detailed balance condition. After the direction of the 
jump has been chosen, the TP hops to the target site if it is vacant; it remains on the 
same site otherwise.

2.2. Master equation

We begin by introducing some auxiliary definitions. We define η η≡ r{ } as the entire set 
of the occupation variables, which is the configuration of the lattice at a given time. 
Next, we define the joint probability ηXP t, ;( ), which is the probability of the TP being 
at site X at time t with the bath particles in a given configuration η. Next, we define 

Figure 1.  Model and notations in the two-dimensional case.
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η νr,  as the configuration obtained from η by exchanging the occupation numbers of sites 
r and + νr e  (Kawasaki-type exchange [34] due to the hop of a bath particle) and ηrˆ  
as the configuration obtained from η by the change η η−1r r→  (Glauber-type exchange 
[35] due to adsorption/desorption events). The time evolution of the joint probability 

ηXP t, ;( ) is given by the master equation:

X X X

X e X

X X

X X

d P t P t P t

d
p P t P t

dg P t P t

df P t P t

2 , ; , ; , ;

2
1 , ; 1 , ;

2 1 , ; , ;

2 , ; 1 , ; .

r X e X

r

X X e

r X
r

r
r

r X
r

r
r

t

d

1 ,
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∑

∑

∑

τ η η η

τ
τ

η η η η

η η η η

η η η η
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+ − − − −

+ − −

+ − −
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µ µ
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+
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µ

µ

*

*

( ) [ ( ) ( )]

[( ) ( ) ( ) ( )]

[( ) ( ˆ ) ( )]

[ ( ˆ ) ( ) ( )]
�

(4)

The first term of the right-hand side of (4) describes the diusion of adsorbed particles, 
the second term corresponds to the diusion of the TP, and the third and fourth terms 
are associated with the desorption and adsorption events of the bath particles.

If not otherwise specified, the sum over an index μ runs over the 2d elements 
± ±�{ }d1, , . In what follows, the brackets ⋅⟨ ⟩ denote an average over the TP position 

and bath particles configurations with weight ηXP t, ;( ), and = ⋅X eXt t 1 denotes the 
position of the TP along the direction of the external force.

3. Equations satisfied by the first cumulants

3.1. Mean position

The time evolution of the first moment Xt⟨ ⟩ of the TP position can be obtained by 
multiplying both sides of (4) by ⋅X e1( ) and summing over all possible configurations 
ηX,( ). An alternative way to compute Xt⟨ ⟩ is to write that during an infinitesimal time 

interval ∆t, the TP position Xt evolves according to

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

σ η
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σ η
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(5)

and take the average of this equation. Both methods result in the following exact 
equation:

σ
τ

= − − −− −{ [ ( )] [ ( )]}
t

X p k t p k t
d

d
1 1 ,e et 1 11 1� (6)
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where k tr X rt
η≡ +( ) ⟨ ⟩ is the probability of having at time t an adsorbed particle at posi-

tion r, defined in the frame of reference moving with the TP. In other words, k tr( ) can 
be thought of as being the density profile as seen from the moving TP.

Note that the approximation obtained by replacing all the local average densities 
k tr( ) by the global density ρ in equation (6) (that we will refer to as the trivial mean-
field approximation) yields

σ
τ

ρ= − −−⟨ ⟩ ( )( )
t

X p p
d

d
1 .t 1 1� (7)

A more accurate determination of the evolution of the mean position of the TP is 
given by equation (6) and relies on the calculation of the quantities k te 1± ( ), which are 
the mean density of bath particles at the sites in the vicinity of the TP. This actually 
requires the computation of the density profile k tr( ) for arbitrary r. The evolution equa-
tions for k tr( ) may be obtained by multiplying the master equation (4) by η +X r and 
summing over all the configurations of ηX,( ). We get the following equation:

∑

∑

τ δ

τ
τ

η η

∂ = ∇ − ∇ − + +

+ − ∇

µ
µ µ

ν
ν ν

−

+ +

µ

ν

*

*

( ) ( ) ( ) ( ) ( )

〈( ) 〉

d k t k t d f g k t df

d
p

2 2 2

2
1 ,

r r e r r

X e X r

t ,

t t

�

(8)

where we define the operator ∇µ acting on any space-dependent function f:

∇ = + −µ µr r e rf f f .( ) ( ) ( )� (9)

Equation (8) is not closed with respect to the density profiles kr, but involves the cor-
relation functions η η+ +µ

⟨ ⟩X e X rt t
. The evolution equations for these correlation functions 

can be obtained from the master equation (4), and one can show that they actually 
involve higher-order correlation functions. Consequently, we face the problem of solving 
an infinite hierarchy of coupled equations for the correlation functions. We then resort 
to an approximation, obtained by writing the occupation variables as η η δη= +⟨ ⟩R R R, 

and by discarding the terms of order δηR
2( ) . We obtain

η η η δη η δη= + ++ + + + + +µ µ µ
〈 〉 〈(〈 〉 )(〈 〉 )〉X r X e X r X r X e X et t t t t t
� (10)

X r X et t
η η+ + µ

� ⟨ ⟩⟨ ⟩� (11)

� µk t k t ,r e( ) ( )� (12)

which is valid for ≠ µr e . In the particular case where = µr e , recalling that η ∈+ µ
0, 1X et

{ }, 
we get

X e X e
2

t t
η η=+ +µ µ

〈( ) 〉 〈 〉� (13)

= µk t .e ( )� (14)
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The approximation (12) then relies on the decoupling of the correlation functions 

X r X et t
η η+ + µ

⟨ ⟩. It can be seen as a mean-field type approximation, and will be general-

ized later to study the other cumulants of the TP position. It will be referred to as the 

decoupling approximation in what follows. This approximation will be shown to be very 
accurate later on.

Using this approximation in equation (8), we obtain

�τ ∂ = +d k t Lk t df2 * 2 ,r rt ( ) ( )� (15)

if ≠ νr e . For the sites = νr e  with d1, 2, ,ν = ± ± … ±{ } we find

�τ ∂ = + +νν νd k t L A t k t df2 * 2 ,e et ( ) [ ( )] ( )� (16)

where �L  is the operator

� ∑≡ ∇ − +
µ

µ µL A t d f g2 ,( ) ( )� (17)

and the coecients µA t( ) are defined by

τ
τ

≡ + −µ µ µA t
d

p k t1
2 *

1 .e( ) [ ( )]� (18)

The occupation number of the origin is taken to be equal to zero by convention. Note 
that equation (16) represents, from the mathematical point of view, the boundary con-
ditions for the general evolution equation (15), imposed on the sites in the immediate 
vicinity of the TP. Equations (15) and (16) together with equation (18) thus constitute 
a closed system of equations which suces to compute the density profiles k tr( ). These 
equations were first obtained by Bénichou et al, and solved in the case of a one-dimen-
sional lattice [24] and of higher-dimensional lattices [26, 27].

3.2. Fluctuations of the TP position

The time evolution of the second moment Xt
2⟨ ⟩ is obtained by multiplying the master 

equation by ⋅X e1
2( ) , and averaging over the TP position and the bath configuration; 

or, alternatively, averaging the balance equation (5). The details of this calculation are 
given in appendix A. We get

σ
τ
σ
τ

≡ ⋅

= − − −

+ − + −

−

−

−

−

〈 〉 〈( ) 〉

{ [〈 〉 ( )] [〈 〉 ( )]}

{ [ ( )] [ ( )]}

X e
t

X
t

p X g t p X g t

p k t p k t

d

d

d

d
2

1 1 ,

e e

e e

t t

t t

2
1

2

1 1

2

1 1

1 1

1 1

�

(19)

where η≡ +( ) ⟨ ⟩g t Xr X rt t
. Knowing that

⎜ ⎟
⎛
⎝

⎞
⎠=

t
X X

t
X

d

d
2

d

d
,t t t

2⟨ ⟩ ⟨ ⟩ ⟨ ⟩� (20)
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and using equation (6), we can deduce an expression for the second cumulant of the TP 
position in the first direction:

σ
τ
σ
τ

− = − −

+ − + −

−

−

−

−

� �(〈 〉 〈 〉 ) [ ( ) ( )]

{ [ ( )] [ ( )]}

t
X X p g t p g t

p k t p k t

d

d

2

1 1 ,

e e

e e

t t
2 2

1 1

2

1 1

1 1

1 1

� (21)

where

δ δη≡ +� ( ) ⟨ ⟩g t X ,r X rt t
� (22)

with δ ≡ − ⟨ ⟩X X Xt t t  and δη η η= −+ + +⟨ ⟩X r X r X rt t t
. It then suces to determine 

±
� ( )g te 1

 

to compute the fluctuations of the TP position.
In the trivial mean-field approximation, one has ρ=kr  and � =g 0r  for any r. 

Equation (21) then reduces to

t
X X p p

d

d
1 .t t

2 2
2

1 1
σ
τ

ρ− = + −−(⟨ ⟩ ⟨ ⟩ ) ( )( )� (23)

Note that equation (23) corresponds to the standard result for the fluctuations of the 
position of a biased random walker, where the time t is renormalized by the fraction 
of unoccupied sites ρ−1 . In the particular case of a one-dimensional lattice where 

+ =−p p 11 1 , the fluctuations of the TP position do not depend on the bias. This is in 
contrast with the case where the TP has a discrete time evolution [36].

The evolution equations  for �g tr( ) are obtained by multiplying the master equa-

tion (4) by δ η +X X r and summing over all the configurations of ηX,( ). The details of 
the calculation are given in appendix B. We get the following equation

( ) ( ) ( ) ( ) ( )

⟨ ( ) ⟩

[ ⟨( ) ⟩ ⟨( ) ⟩]

[ ( ( )) ( ( ))] ( )

� � �∑

∑

τ δ

τ
τ

δ η η

τ
τ
σ η η η η

τ
τ
σ

∂ = ∇ − ∇ − +

+ − ∇

+ − − −

− − − −

µ
µ µ

µ
µ µ

−

+ +

+ + + − + + +

−

µ

µ

− −

−

d g t g t d f g g t

d
p X

d
p p

d
p k t p k t k t

2 * 2

2 *
1

2 *
1 1

2 *
1 1 .

r r e r r

X e X r

X e X r e X e X r e

e e r

t

t

,

1 1

1 1

t t

t t t t1 1 1 1

1 1

�

(24)

We then notice that this evolution equation  involves higher-order correlation func-
tions, of the form δ η η+ + µ

⟨ ⟩X X r X et t t
. As previously, their computation would lead to an 

infinite hierarchy of coupled equations. We then write an extension of the decoupling 
approximation (12), obtained by writing η η δη= +⟨ ⟩R R R and discarding the terms of 

order δηR
2( ) . We find

X X X ,X r X e X r X e X r X et t tt t t t t t
δ η η η δ η δ η η++ + + + + +µ µ µ

�〈 〉 〈 〉〈 〉 〈 〉〈 〉� (25)
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� �= +
µ µk t g t k t g t ,r e e r( ) ( ) ( ) ( )� (26)

which is valid for ≠ µr e . For = µr e , using the relation η η=+ +µ µX e X e
2

t t
( ) , we obtain

X g .X e et
2

t
δ η =+ µ µ

�⟨ ( ) ⟩� (27)

If ∉ …± ±{ }r e e, , d1 , expanding the term of the second line of equation  (24), we 
obtain

∑

∑

τ
τ

δ η η

τ
τ

δ η δ η δ η η δ η η

− ∇

= − − +

µ
µ µ

µ
µ

+ +

+ + + + + + + +

µ

µ µ µ µ

*

*

⟨ ( ) ⟩

[⟨ ⟩ ⟨ ⟩ ⟨ ⟩ ⟨ ⟩]

d
p X

d
p X X X X

2
1

2
,

X e X r

X r e X r X e X r e X e X r

t

t t t t

t t

t t t t t t

�
(28)

and using the definitions of �gr (equation (22)) as well as the decoupling approximation 
(equation (26)), we obtain

∑τ
τ

δ η η− ∇
µ
µ µ+ +µ

*
⟨ ( ) ⟩d

p X
2

1 X e X rt t t� (29)

� � �∑τ
τ

= ∇ − ∇ − ∇
µ
µ µ µ µµ µ

d
p g t g t k t k t g t

2 *
.r e r e r[ ( ) ( ) ( ) ( ) ( )]� (30)

Then, we gather the first three terms of the rhs of equation (24) and obtain

⎧
⎨
⎩

⎫
⎬
⎭

∑ ∑

∑ ∑

∑

τ
τ

δ η η

τ
τ

τ
τ

τ
τ

∇ − + + − ∇

= + − ∇ − + − ∇

= − ∇

µ
µ

µ
µ µ

µ
µ

µ
µ µ

µ
µ µ

+ +µ

µ µ

µ

� �

� � �

� ��

*

* *

*

( ) ( ) ( ) ⟨ ( ) ⟩

[ ( )] ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

g t d f g g t
d

p X

d
k t g t d f g g t

d
p g t k t

Lg t
d

p g t k t

2
2

1

1
2

1 2
2

2
.

r r X e X r

e r r e r

r e r

t t t

�

(31)

The last two terms of equation (24) are recast using the decoupling approximation from 
equation (12). One obtains

[ ⟨( ) ⟩ ⟨( ) ⟩]

{ [ ( )] [ ( )]} ( )

τ
τ
σ η η η η

τ
τ
σ

− − −

− − − −

+ + + − + + +

−

− −

−

d
p p

d
p k t p k t k t

2 *
1 1

2 *
1 1

X e X r e X e X r e

e e r

1 1

1 1

t t t t1 1 1 1

1 1

�

(32)

τ
τ
σ

τ
τ
σ

= − − −

− − − −

+ + − + +

−

− − −

−

d
p k k t k t p k k t k t

d
p k t p k t k t

2 *

2 *
1 1

r e e r e r e e r e

e e r

1 1

1 1

1 1 1 1 1 1

1 1

[ ( ( ) ( )) ( ( ) ( ))]

{ [ ( )] [ ( )]} ( )
�

(33)
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τ
τ
σ= − ∇ − − ∇− −−

d
p k t k t p k t k t

2 *
1 1 .e r e r1 1 1 11 1

{ [ ( )] ( ) [ ( )] ( )}� (34)

Using equations  (24), (31) and (34), we finally obtain the following equation  for the 
evolution of the correlation functions �gr:

d g t Lg t
d

p k t k t p k t k t

d
p g t k t

2
2

1 1

2
,

r r e r e r

e r

t 1 1 1 11 1

∑

τ
τ
τ
σ

τ
τ

∂ = + − ∇ − − ∇

− ∇
µ
µ µ

− −

µ

−� �

�

�*
*

*

( ) ( ) { [ ( )] ( ) [ ( )] ( )}

( ) ( )
�

(35)

which holds for all r, except for = …± ±{ }r e e0, , , d1 .
On the other hand, for the special sites = νr e  with ν = ± … ±{ }d1, , , the term in 

the second line of equation (24) can be rewritten as

d
p X

2
1 X e X et t t

∑τ
τ

δ η η− ∇
µ
µ µ+ +µ ν

*
〈 ( ) 〉�

∑τ
τ

δ η η η= − −
µ
µ + + + +µ ν µ ν

*
〈 ( )( )〉d

p X
2

1 X e X e e X et t t t� (36)

∑τ
τ

δ η η η= − −
µ ν

µ
≠±

+ + + +µ ν µ ν

*
〈 ( )( )〉d

p X
2

1 X e X e e X et t t t�

d
p X

2
1 X e X e X et 2t t t

τ
τ

δ η η η+ − −ν + + +ν ν ν

*
〈 ( )( )〉�

τ
τ

δ η η η+ − −ν− + +ν ν−

*
〈 ( )( )〉d

p X
2

1 .X e X X et t t t� (37)

The first term can be written in terms of kr and �gr using equation (29). The last two 
terms are rewritten using the decoupling approximation (equation (26)), the property 

η η=r r
2( ) , and the conventions �= =k g 00 0 . We obtain

d
p X

d
p g t g t k t k t g t

d
p g t k t g t k t g t

d
p g t k t g t k t g t

2
1

2

2

2

X e X e

r e r e r

e e e e e

e e e e e

t

2 2 2

t t
∑

∑

τ
τ

δ η η

τ
τ
τ
τ
τ
τ

− ∇

= ∇ − ∇ − ∇

+ − +

+ − + +

µ
µ µ

µ ν
µ µ µ µ

ν

ν

+ +

≠±

−

µ ν

µ µ

ν ν ν ν ν

ν ν ν ν ν− −

� � �

� � �

� � �

*

*

*

*

〈 ( ) 〉

[ ( ) ( ) ( ) ( ) ( )]

{ ( ) [ ( ) ( ) ( ) ( )]}

{ ( ) [ ( ) ( ) ( ) ( )]}

�

(38)

Using equation (38), and after straightforward computations, the first three terms of 
the rhs of equation (24) yield
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g t d f g g t
d

p X

L A t g t
d

p g t k t
d

p g t k t

2
2

1

2 2
.

e e r e X e X e

e e e e e

t, t t
∑ ∑

∑

δ
τ
τ

δ η η

τ
τ

τ
τ

∇ − ∇ − + + − ∇

= + − − ∇

µ
µ µ

µ
µ µ

ν ν
µ
µ µ

− + +ν µ ν µ ν

ν ν ν µ ν

� �

� � ��

*

* *

( ) ( ) ( ) ( ) ⟨ ( ) ⟩

[ ( )] ( ) ( ) ( ) ( ) ( )
�

(39)

Finally, using again equation (34) to rewrite the last two terms of equation (24), we 

obtain the equation verified by �
ν

g te ( ) for d1, ,ν ∈ ± … ±{ }:

d g t L A t g t
d

p k t k t p k t k t

d
p g t k t

d
p g t k t

2
2

1 1

2 2
.

e e e e e e

e e e e

t 1 1 1 11 1

∑

τ
τ
τ
σ

τ
τ

τ
τ

∂ = + + − ∇ − − ∇

− − ∇

ν

ν
µ
µ µ

− −ν ν ν ν

ν ν µ ν

−� �

� �

�*
*

* *

( ) [ ( )] ( ) { [ ( )] ( ) [ ( )] ( )}

( ) ( ) ( ) ( )
�

(40)

Equations (35) and (40) then form a closed system of equations for the quantities �g tr( ), 
provided that the quantities νk te ( ) are known. Note that equations (35) and (40) are 
linear in the correlation functions �g tr( ), which can be written explicitly in terms of the 
density profiles k tr( ).

The quantities 
±

� ( )g te 1
 can be deduced from these equations, and one can compute 

the evolution of the fluctuations of the TP position using equation (21).

3.3. Stationary values

We turn to the limit ∞t → . We assume that the quantities k tr( ) and �g tr( ) have station-
ary values, so that

∂ =
∞

k tlim 0,r
t

t ( )
→� (41)

�∂ =
∞

g tlim 0.r
t

t ( )
→� (42)

The existence of these stationary values will be shown afterwards. We will use the 
simplified notations:

=
∞

k k tlim ,r r
t

( )
→� (43)

� �=
∞

g g tlim ,r r
t

( )
→� (44)

=µ µ
∞

A A tlim .
t

( )
→� (45)

We also define the observables:

≡
∞

⟨ ⟩
→

V
t

Xlim
d

d
,

t
t� (46)
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≡ −
∞

K
d t

X Xlim
1

2

d

dt
t t
2 2(⟨ ⟩ ⟨ ⟩ )

→
� (47)

so that V and K represent respectively the velocity and the diusion coecient of the 
TP in the stationary state. Using equation (6), the velocity V can be written in terms 
of the functions kr:

σ
τ

= − − −− −V p k p k1 1 .e e1 11 1
[ ( ) ( )]� (48)

Similarly, using equation (21), the diusion coecient can be written

� �
σ
τ

σ
τ

= − + − − −− −− −
K

d
p k p k

d
p g p g

2
1 1 .e e e e

2

1 1 1 11 1 1 1
[ ( ) ( )] ( )� (49)

The stationary values of the density profiles kr (in particular ke 1±  and therefore the 
velocity V) are obtained by solving equations (15) and (16) with ∂ =k t 0rt ( ) . Similarly, 
solving equations (35) and (40) with �∂ =g t 0rt ( ) , one obtains the stationary values of 
g e 1±
�  and the diusion coecient K.

Note that these stationary equations are valid in any dimension, and allow us to 
compute the velocity and diusion coecient of the TP under the approximations pre-
sented above (equations (12) and (26)). Their solutions will be presented in the case of 
a one-dimensional system in section 5.

4. Cumulant generating function

4.1. Governing equations

In the previous sections, using a decoupling approximation, we were able to deter-
mine the stationary equations satisfied by the quantities η= ⟨ ⟩kr r  and δ δη= +� ⟨ ⟩g Xr rt Xt

, 
which are involved in the expression of the stationary velocity V (equation (48)) and of 
the stationary diusion coecient K (equation (49)) of the TP. Here, we aim at calcu-
lating the higher-order cumulants of Xt, defined by

κ ≡
∂ Ψ

∂
=t

u t

u

1

i

;
,n n

n

n u 0( ) ( ) ∣� (50)

where the quantity

Ψ ≡( ) ⟨ ⟩u t; ln e uXi t� (51)

is known as the second characteristic function (or cumulant generating function) of Xt. 
Using the balance equation (5), we get the relation

τ
η

τ
η

τ
η η

=
∆

− +
∆

−

+ −
∆

− + −

σ σ+
+

−
− +

+ − +

+∆
−

−

⎡
⎣⎢

⎤
⎦⎥

t
p

t
p

t
p p

e e 1 e 1

e 1 1 1 .

X e X e

X e X e

uX u X u X

uX

i i
1

i
1

i
1 1

t t t

t

t

t

t

t t

1 1

1 1( )

( ) ( )

( ) ( )

( ) ( )

�

(52)
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Note that this equation involves two dierent averages: an average over the direction 
of the step taken by the TP, and an average of the realizations. Equation (52) leads to

τ
η

τ
η= − − + − −σ σ

+
− −

+ −
⟨ ⟩ ( )⟨ ( )⟩ ( )⟨ ( )⟩

t

p pd

d
e e 1 e 1 e 1 e 1 ,X e X e

uX u uX u uXi 1 i i 1 i it t

t

t

t1 1

�
(53)

and, using the definition of Ψ u t;( ) from equation (51):

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥τ

η

τ

η

Ψ
=

= − − + − −σ σ+ − − + −

〈 〉
〈 〉

( )
〈 〉

〈 〉
( )

〈 〉
〈 〉

t t

p p

d

d

1

e

d

d
e

e 1 1
e

e
e 1 1

e

e
.

X e X e

uX
uX

u
uX

uX
u

uX

uX

i
i

1 i
i

i

1 i
i

i

t

t

t

t

t

t

t

t

1 1

�

(54)

We define the following correlation functions

w u t w u t; e and ;
e

e
.r X r r

X ruX
uX

uX
i

i

i
t

t

t

t

t
η

η
≡ ≡+

+�( ) 〈 〉      ( )
〈 〉

〈 〉
� (55)

Finally, we obtain the following evolution equation for the cumulant generating func-
tion of the TP position:

� �
τ τ

Ψ
= − − + − −σ σ− −

−
t

p
w u t

p
w u t

d

d
e 1 1 ; e 1 1 ; .e e

u u1 i 1 i
1 1

( ) [ ( )] ( ) [ ( )]� (56)

Assuming that the quantities �w u t;e1( ) and � −w u t;e 1
( ) reach stationary values when ∞t →  

(their existence will be shown a posteriori), the second characteristic function has the 
following asymptotic behavior:

Ψ ∼ Φ
∞

u t u t; ,
t

( ) ( )
→� (57)

with

� �
τ τ

Φ = − − + − −σ σ− −
−u

p
w u

p
w ue 1 1 e 1 1 .e e

u u1 i 1 i
1 1

( ) ( ) [ ( )] ( ) [ ( )]� (58)

The relation (57) indicates that all the cumulants of Xt are linear in time in the long-
time limit. In particular, this implies that the nth moment of the rescaled variable 

Z X X X X/t t t t t
2 2= − −( ⟨ ⟩) ⟨ ⟩ ⟨ ⟩  scales as t1−n/2 in the long-time limit. All the moments 

of Zt of order greater than 2 vanish when ∞t → , and Zt is distributed according to a 

Gaussian distribution at large times.
This calculation allows us to compute the full distribution of Xt in the long-time 

limit. Assuming that the u-dependance of ±� ( )w ue 1
 is known, we can derive from the pre-

vious equations the probability density function (PDF) ≡ =P x X xProbt t( ) [ ] as follows. 

The quantity e euX u ti ;t = Ψ⟨ ⟩ ( ) is defined by

P xe e .uX

x
t

uxi it ∑=
=−∞

∞

⟨ ⟩ ( )� (59)

Ψe u t;( ) is then the Fourier transform of the PDF Pt(x), which can be obtained by the 
inverse Fourier transform:
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∫
π

=
π

π

−
− ΨP x

ud

2
e e ,t

ux u ti ;( ) ( )� (60)

and, using the expression of the long-time limit of Ψ t( ) (equations (57) and (58)),

� �∫
π τ τ

∼ − − + − − −
π

π
σ σ

∞ −
− −

−P x
u p t

w u
p t

w u ux
d

2
exp e 1 1 e 1 1 i .e et

t

u u1 i 1 i
1 1{ }( ) ( )[ ( )] ( )[ ( )]

→
�

(61)

Consequently, it suces to determine the u-dependence of ±� ( )w u t;e 1
 to obtain the PDF 

of the TP position. In what follows, we establish the evolution equations for the quanti-
ties �w u t;r( ) starting again from the master equation (4).

4.2. Evolution equations of the quantities �w u t;r( )

The evolution equation of the correlation functions w u t;r( ) (defined by equation (55)) 
can be obtained by multiplying both sides of the master equation (4) by the quantity 

η + eX r
uXi  and averaging with respect to the bath configuration η and the TP position 

Xt. Extending the method used to derive the evolution equations of the correlation 
functions �g tr( ) starting from the master equation (4), it is found that w u t;r( ) obeys the 
following exact equation (see appendix B):

⎛
⎝
⎜

⎞
⎠
⎟∑

∑

∑

τ δ

τ
τ

η η

τ
τ

η η

∂ = ∇ − ∇ − + +

+ − ∇

+ − −

µ
µ µ

µ
µ µ

σ

−

+ +

=±
+ + +

µ

µ

ε
ε

ε
ε ε

*

*

*

( ) ( ) ( ) ( ) 〈 〉

〈 ( ) 〉

( )〈 ( ) 〉

d w u t w u t d f g w u t df

d
p

d
p

2 ; ; 2 ; 2 e

2
e 1

2
e 1 e 1 .

r r e r r

X e X r

X e X r e

t
uX

uX

u uX

,
i

i

1

i i

t

t

t t

t

t t

�
(62)

We then make the following decoupling hypothesis:

η η η η

η η

− −

+ −
+ + + +

+ +

µ µ

µ

�⟨( ⟨ ⟩) ⟩ ⟨( ⟨ ⟩) ⟩⟨ ⟩

⟨( ⟨ ⟩) ⟩⟨ ⟩

e e e e

e e ,

X r X e X r X e

X e X r

uX uX uX uX

uX uX

i i i i

i i

t t

t t

t t

t t

t t

t t

�

(63)

which is valid for ≠ µr e . This is equivalent to

w u t k t k t w u t k t k te ; ; e .X r X e r e r e r e
uX uXi it

t t

tη η = + −+ + µ µ µ µ⟨ ⟩ ( ) ( ) ( ) ( ) ⟨ ⟩ ( ) ( )� (64)

For = µr e , one gets

e eX e X e
uX uXi 2 it

t

t

t
η η=+ +µ µ

⟨ ( ) ⟩ ⟨ ⟩� (65)
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= µw u t; .e ( )� (66)

This decoupling approximation is an extension of the approximations (12) and (26): 
it is obtained by writing the occupation variables as R R Rη η δη= +⟨ ⟩ , and discarding 

the terms of order δηR
2( ) . Note that expanding equation (64) at order 0 and 1 in u, we 

retrieve the decoupling approximations made for the correlation functions 
X r X et t
η η+ + µ

⟨ ⟩ 
(equation (12)) and δ η η+ + µ

⟨ ⟩X X r X et t t
 (equation (26)). Using this approximation in equa-

tion (62), and following a procedure similar to the one used to derive equations (35) and 
(40) from equation (24), we obtain for ≠ νr e ,

d w u t Lw u t df
d

p k t w u t k t

d
p w u t k t k t k t w u t

2 ; ; 2 e
2

e ;

2
e 1 ; 1 e ; .

r r e e r

r e e r e e e

t
uX uX

u uX

i i

1

i i

t t

t

∑

∑

τ
τ
τ

τ
τ

∂ = + + − ∇

+ − − + −

µ
µ µ

σ

=±
+ +

µ µ
�

ε
ε

ε
ε ε ε ε ε

*
*

*

( ) ( ) 〈 〉 [ ( )〈 〉 ( )] ( )

( ){ ( )[ ( )] ( )[〈 〉 ( ) ( )]}
� (67)

For = νr e , the evolution equation becomes:

∑

∑

τ
τ
τ

τ
τ

τ
τ

∂ = + +

+ − ∇ + −

+ − − + −

ν

µ
µ µ ν

σ

=±
+ +

ν ν

µ µ ν ν ν ν

ν ν

�

ε
ε

ε
ε ε ε ε ε

*
* *

*

( ) [ ( )] ( ) 〈 〉

[ ( )〈 〉 ( )] ( ) [ ( )〈 〉 ( )] ( )

( ){ ( )[ ( )] ( )[〈 〉 ( ) ( )]}

d w u t L A t w u t df

d
p k t w u t k t

d
p k t w u t k t

d
p w u t k t k t k t w u t

2 ; ; 2 e

2
e ;

2
e ;

2
e 1 ; 1 e ; .

e e

e e e e e e

e e e e e e e

t
uX

uX uX

u uX

i

i i

1

i i

t

t t

t

� (68)

These equations are conveniently written in terms of the variable �w u t;r( ) by noticing 
that:

τ τ

∂
∂

=
∂

∂
−

∂
∂

=
∂
∂

−
∂Ψ
∂

=
∂
∂

− − − + − −σ σ− −

�

�

� � �{ }

( ) ( )

( )

( ) ( )[ ( )] ( )[ ( )]

w

t

w u t

t

w u t

t

w

t
w u t

t

w

t
w u t

p
w u t

p
w u t

1

e

; ;

e

e

1

e
;

1

e
; e 1 1 ; e 1 1 ; .

r r r

r
r

r
r e e

uX uX

uX

uX

uX
u u

i i

i

i

i

1 i 1 i

t t

t

t

t
1 1

�
(69)

Finally, we divide the evolution equations (67) and (68) by ⟨ ⟩e uXi t  and obtain the evolu-

tion equations for �w u t;r( ), for ≠ νr e :

∑

∑

τ
τ
τ

τ
τ

∂ = + + − ∇

+ − ∇ − − − −

µ
µ µ

σ

=±
+ + +

µ µ
�� � �

� � � �
ε

ε
ε

ε ε ε ε ε ε

*
*

*

( ) ( ) [ ( ) ( )] ( )

( ){ ( ) ( )[ ( ) ( )] ( )[ ( ) ( )]}

d w u t Lw u t df
d

p k t w u t k t

d
p w u t k t w u t k t w u t k t w u t

2 ; ; 2
2

;

2
e 1 ; ; ; ; ,

r r e e r

r e r e r e e r e r

t

u

1

i

�
(70)

and for = νr e :
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∑

∑

τ
τ
τ

τ
τ

τ
τ

∂ = + +

+ − ∇ + −

+ − ∇ − − − −

ν

µ
µ µ ν

σ

=±
+ + +

ν ν

µ µ ν ν ν ν

ν ν ν ν ν

�� �

� �

� � � �
ε

ε
ε

ε ε ε ε ε ε

*
* *

*

( ) [ ( )] ( )

[ ( ) ( )] ( ) [ ( ) ( )] ( )

( ){ ( ) ( )[ ( ) ( )] ( )[ ( ) ( )]}

d w u t L A t w u t df

d
p k t w u t k t

d
p k t w u t k t

d
p w u t k t w u t k t w u t k t w u t

2 ; ; 2

2
;

2
;

2
e 1 ; ; ; ;

e e

e e e e e e

e e e e e e e e e e

t

u

1

i

�
(71)

These equations can in principle be solved in the stationary limit ∞t → , by setting 
�∂ =w u t; 0rt ( )  in equations  (70) and (71) and obtaining the values of �w ur( ) satisfying 

these stationary equations. In particular, this allows us to obtain the u-dependence of 
the functions w ue 1±� ( ) and to deduce Pt(x) from equation (61). These equations are valid 
in any dimension, and their solution gives the cumulant generating function and the 
probability distribution function of the TP position.

This resolution will be made explicit in the case of a one-dimensional lattice in sec-
tion 6.5. We also notice that the functions �w u t;r( ) can be expanded in powers of u to 
compute higher-order cumulants. In particular, we give in the next section the evolu-
tion equation satisfied by the third cumulant of the position of the TP.

4.3. Third-order cumulant

In this section, we study the third cumulant of the distribution of Xt, which character-
izes its skewness. We use equations (70) and (71), describing the evolution of �w u t;r( ), to 
calculate the third order cumulant. We define the coecient γ by the relation:

γ≡ −
∞

⟨( ⟨ ⟩) ⟩
→ t

X Xlim
1

6

d

d
.

t
t t

3
� (72)

Recalling the definition of Ψ t( ) from equation (51), we get the following expansion in 
powers of u:

t u X
u

X X
u

X Xi
i

2

i

6u
t t t t t

0

2
2

3
3Ψ = + − + − + …( ) ⟨ ⟩ ( ) ⟨( ⟨ ⟩) ⟩ ( ) ⟨( ⟨ ⟩) ⟩

→
� (73)

In the long-time limit, and using the definitions of V (equation (46)), K (equation (49)) 
and γ (equation (72)), one gets

γ
Ψ

= + + + …
∞ t

uV u K ulim
d

d
i i i

t

2 3( ) ( )
→
� (74)

We define the correlation function ∼m tr( ) by the relation

m t X X k t X X ,r X r rt t t t
2 2 2

t
η≡ − − −∼

+( ) ⟨( ⟨ ⟩) ⟩ ( )[⟨ ⟩ ⟨ ⟩ ]� (75)

so that the expansion of �w tr( ) in powers of u is written

�� = + + +∼w t k t ug t
u

m t ui
i

2
,r r r r

2
3O( ) ( ) ( ) ( ) ( ) ( )� (76)

where we used the definitions of η= +( ) ⟨ ⟩k tr X rt
 and g t Xr X rt t

δ δη= +� ( ) ⟨ ⟩. Expanding 

both sides of equation (56) up to order 3 in u in the limit ∞t →  and using equation (74), 
one gets the following expression for γ:
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⎡
⎣⎢

⎤
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⎡
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⎤
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σ σ
σ
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p
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p
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6
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1
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1

6
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2
.e e e e e e

1 2 1 2
1 1 1 1 1 1

( ) ( )
�

(77)
According to equation (76), the general evolution equations for �w u t;r( ) (equations 

(70) and (71)) expanded at order 2 in u then give the evolution equations of ∼m tr( ). 
We get:

	•	 for ≠ νr e :

∑

∑

τ
τ
τ

τ
τ

σ σ

∂ = − ∇

+ − ∇ − ∇ + − ∇
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*
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(78)

	•	 for = νr e :

d m t L A t m t
d

p m t k t
d

p m t k t

d
p k t g t g t k t k t k t
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2 2

2
2 1 1 .

e e e e e e

e e e e e e
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∑
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τ
τ
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τ
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τ
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σ σ
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∼ ∼ ∼ ∼
ν

µ
µ µ ν
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ε ε ε εε ε ε

*
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( ) [ ( )] ( ) ( ) ( ) ( ) ( )

{ [( ( )) ( ) ( ) ( )] ( ( )) ( )}
�

(79)

In the stationary limit, one computes from equations (78) and (79) the quantities 

m e 1

∼
±  and then the coecient γ from equation (77). This will be made explicit in the case 

of a one-dimensional lattice in section 5.3.

5. First cumulants and distribution of the TP position in one dimension

In this section, we focus on the one-dimensional version of the general model presented 
in section 2.1. This situation is related to a number of lattice models of interacting 
particles which have been widely studied in the mathematical and physical literature. 
In particular, in the situation where the number of particles on the lattice is conserved 
and where the TP is not biased, the model corresponds to the well-known single file 
problem, for which several results have been derived exactly [37–44].

In what follows, we consider the equations derived in the previous section in the 
particular case of a one-dimensional lattice. We first recall the solutions of the equa-
tions satisfied by the density profiles kr that were obtained in previous studies, and give 
a detailed resolution of the equations verified by the correlation functions �gr and �wr.

5.1. Solution of the equation on kr in one dimension

The solutions of the equations verified by kr have already been presented [24], and we 
recall them here for completeness. In one dimension, we adopt the simplified notation 
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= ≡k k kr en n1
. The stationary limit of the general equation  verified by the density 

profiles (equation (15)) is then a second order recurrence relation on the quantities kn. 
Its solution has the following form:

⎧
⎨
⎩
ρ
ρ

=
+ >
+ <

+

−
k

K r n

K r n

for 0,

for 0,
n

n

n
1

2

 
 � (80)

where

∓
=

+ + + + + + −− − −
r

A A f g A A f g A A

A

2 2 4

2
,1

2

1 1 1 1
2

1 1

1

( ) ( ( ))
� (81)

while the amplitudes K± are given respectively by

ρ=
−
−

+
−

−
K

A A

A A r
,1 1

1 1 1
� (82)

and

ρ=
−

−
−

−

−
K

A A

A r A/
.1 1

1 2 1
� (83)

We notice that >r r2 1, which indicates that the density profile behind the TP decreases 
more slowly than in front of it. We also note that K+   >  0 and K−  <  0 which indicates 
that there is a jammed region ahead of the TP, and, on the contrary, a depleted region 
behind it.

One obtains a closed set of two nonlinear equations  determining implicitly the 
parameters A1 and A−1, from which one can compute the TP stationary velocity, 
related to A 1±  through

σ
τ

= − −V A A
2 *

.1 1( )� (84)

Substituting equation (80) into the definition of µA  (equation (18)), we find

⎡
⎣
⎢

⎤
⎦
⎥τ

τ
ρ ρ= + − −

−
−

−

−
A

p A A

A r A
1

2 *
1

/
,1

1 1 1

1 1 1
� (85)

⎡
⎣⎢

⎤
⎦⎥

τ
τ

ρ ρ= + − −
−
−

−
− −

−
A

p A A

A A r
1

2 *
1 .1

1 1 1

1 1 2
� (86)

For a given set of parameters (f, g, σ, τ, τ* and p1), the numerical resolution of this 
system leads to the values of A1 and A−1 and then, using equation (84), to the value of 
the stationary velocity of the TP. This approximated value of the stationary velocity 
will be compared to numerical simulations in section 6.2.

5.2. Solution of the equation on �gr in one dimension

We now go one step further and determine the diusion coecient K. This in turn 
requires the knowledge of the functions �gr. For simplicity, we adopt the notations 
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� � �= =g g gr en n1
. Using the expressions of kn from equation  (80), the general equa-

tions satisfied by �gn (equations (35) and (40)) become:

	•	 for n  >  1:

A g g A g g f g g

p K r K r
g
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(87)

	•	 for n  <  −1:

A g g A g g f g g
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	•	 �g1 and �−g 1 may be computed using the boundary conditions given by equation (40):
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		 The general solution of equations (87) and (88) can be written:

� α= −
−

>
−

−g r
W

A r A r
nr nfor 0,n

n n
1

1 1 1 1
1 1� (91)

		 and
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−

<
′

−
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W
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1 2� (92)
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where α and β are constants to be determined, and where

� �
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Substituting equation  (91) into equation  (89), equation  (92) into equation  (90), and 
writing equation (91) for n  =  1 and equation (92) for n  =  −1, we obtain a linear system 
of four equations satisfied by α, β, �g1 and �−g 1, which is straightforward to solve. The 
explicit expressions of �g1 and �−g 1 are given in appendix C. Note that they rely on the 
determination of the quantities ±K  and r r,1 2, which are determined numerically for a 
given set of parameters with the method detailed in section 5.1. Finally, for a given set 
of parameters, one can deduce the values of ±�g 1 and the value of the diusion coecient 
using equation (49). Note that this calculation also gives access to the spatial depen-
dence of the cross correlations functions �gn through equations (91) and (92).

In section 6.3, we investigate the dependence of K on the dierent parameters of the 
problem, and we compare the analytical prediction from the decoupling approximation 
to results from numerical simulations. We give a first insight into the understanding 
of the counter-intuitive nonmonotonic dependence of K over the density ρ that was 
described in [31].

5.3. Solution of the equation on ∼mr in one dimension

We finally solve the equations satisfied by the correlation functions ∼ ±m e 1
, from which 

we will compute the coecient γ, related to the third cumulant of the distribution, 
and defined by equation (75). Starting from the general equations verified by ∼mr and 
valid in any dimension (equations (78) and (79)), we study the one-dimensional case. 

For simplicity, we write = =∼ ∼ ∼m m mr en n1
. The quantities ∼mn are the solutions of the 

equations presented below:

	•	 for ≠ νr e , using equation (78), one gets:

− + − − + =∼ ∼ ∼ ∼ ∼
+ − −A m m A m m f g m S n2n n n n n1 1 1 1( ) ( ) ( ) ( )� (95)

		 where S(n) can be expressed explicitly in terms of the functions kn and �gn, deter-

mined respectively in sections 5.1 and 5.2. For n  >  0, we write S(n) under the 

following form:

= ++ +S n C nC r .n1 2 1( ) ( )� (96)

		 The explicit expressions of +C1  and +C 2  are given in appendix D. Consequently, the 

solution of equation (95) reads:

= Γ + +∼
+ +m r a n b n r ,n

n n
1

2
1( )� (97)
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		 For n  <  0, a similar resolution leads to:
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		 and where the explicit expressions of −C1  and −C 2  are given in appendix D.

	•	 for =r e1, we obtain from equation (79):
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	•	 for = −r e 1 we obtain from equation (79):
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Writing equation (97) for n  =  1, equation (100) for n  =  −1, and considering the bound-
ary conditions given by equations (103) and (105), one obtains a linear system of four 
equations with unknowns ∼m1, 

∼
−m 1, Γ and δ:

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

δ
Γ

=∼
∼

−

−
− −

r M M

r M M

A r M M

A r M M

m

m

Y

Y

Y

Y

0

0

0

0

1 13 14

2
1

23 24

1 1
2

33 34

1 2
2

43 44

1

1

1

2

3

4

� (107)

where the expressions of the quantities Mij and Yj are given in appendix D. Finally:
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(109)
The procedure to compute the coecient γ for a given set of parameters is the fol-

lowing. With the method presented in section 5.1, one can compute numerically the 
quantities K±, r1, r2 and k 1±  for a given set of parameters. Using the analytical expres-
sions of g 1±� , α and β in terms of these quantities given in appendix C, one computes 
m 1
∼

±  with equations (108) and (109). The coecient γ is deduced from its definition (77).

5.4. Solution of the equations on �wr in one dimension

We now turn to the resolution of the equations satisfied by the correlation functions �wr 
in the specific case of a 1D lattice and in the stationary limit.

Starting from equations (70) and (71) and assuming that there exist nontrivial sta-
tionary solutions, one gets the following equations satisfied by � �≡w w en n 1

:

B w B w B w B K r B nfor 1n n n
n

1 1 2 3 1 4 1 5− + = − + >+ − +� � � ( )      � (110)

− + = − + < −+ − −� � � ( )    B w B w B w C K r B nfor 1n n n
n

1 1 2 3 1 4 2 5� (111)

− + + + + = =− −� � � � � �  D w D w D w D D w D w w n0 for 11 2 2 1 3 1 4 5 1
2

6 1 1� (112)

� � � � � �− + + + + = = −− − − −E w E w E w E D w D w w n0 for 11 1 2 1 3 2 4 6 1
2

5 1 1    � (113)

where the expressions of the dierent coecients Bi, Ci, Di, Ei are given in appendix E. 
Equations (110) and (111) are associated with the characteristic equation

− + =B X B X B 0,1
2

2 3� (114)

which has the solutions
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� (115)

An expansion in powers of u shows that

= + = +q r u q r uand .1 1 2 2O O( )      ( )� (116)
At order zero in u, equations (110) and (111) are equivalent to the stationary limit of 
equations (15) and (16), so that their solutions must coincide at this order. Consequently, 
the general solution of equation (110) is of the form

� α= +w qn
n
1� (117)

The particular solution of equation (110) is easily calculated, and for n  >  0, we find

� α= −
− +

−
− +

+
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−w q
B K
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With similar arguments, we find for n  <  0
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Finally, writing equation  (118) (resp. equation  (119)) for n  =  1 (resp. n  =  −1) and 
using equations (112) and (113), we find the following nonlinear system of four equa-
tions whose unknowns are �w1, �−w 1, α+ and α−:
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� (120)

The numerical resolution of this system of equations for specific values of u allows us to 
calculate �w1 and �−w 1 as functions of u, and to deduce the stationary cumulant generat-
ing function Ψ as a function of u. Using equation (61), one can calculate the probability 
distribution Pt(x), valid in the asymptotic regime ∞t → .

In the next section, we analyze the solutions obtained for the velocity V, the 
diusion coecient K and the coecient γ to study their dependence on the dierent 
parameters of the problem. These results, which were obtained using our decoupling 
approximation, are compared with numerical simulations which exactly sample the 
master equation (4).
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6. One-dimensional lattice: results and discussion

6.1. Algorithm and numerical methods

In order to verify the accuracy of the approximation involved in the computation of 
the cumulants of the TP position, we perform numerical simulations. We use a kinetic 
Monte Carlo (or Gillespie) algorithm [45, 46] in order to get an exact sampling of the 
master equation (4) describing the dynamics of the system. The details of the numerical 
methods are given in appendix F.

6.2. Velocity

For completeness, we present results for the velocity of the TP, which had already been 
presented in [24]. We study here the terminal velocity reached by the TP as a function 
of the density ρ, for dierent values of the bias. As ρ is in fact fixed by the values of f 
and g, we decide to vary f for dierent values of g in order to explore the whole range 
of parameters. Results are presented in figure 2. As expected, the velocity of the TP is 
a decreasing function of the bath density. We also compare the result from our decou-
pling approximation to the trivial mean-field solution (dashed line).

The discrepancy between the results from numerical simulations, which correspond 
to an exact sampling of the master equation (4), and the solution obtained using the 
decoupling approximation (12) is very small, and the agreement is particularly good 
close to ρ = 0 and ρ = 1. The decoupling approximation is then very accurate for the 
estimation of the velocity of the TP.

6.3. Diusion coecient

6.3.1. Results.  In a similar way, we study the diusion coecient as a function of 
the density ρ, for dierent values of p1 and g. We compare the analytical predictions 
to results from numerical simulations in figure  3. The dependence of the diusion 
coecient on the density of particles was first investigated in [31]. In the simulations 
results presented in that publication, the numerical errors were underestimated, and we 
present here refined results.

The analytical predictions as well as the numerical simulations reveal the existence 
of a striking eect: the diusion coecient can be a nonmonotonic function of the 
density of bath particles. Counter-intuitively, increasing the density of particles sur-
rounding the TP may increase the TP diusion coecient in some range of parameters. 
This result is surprising, since one naturally expects that the diusion coecient will 
be maximal when there are no hardcore bath particles (i.e. when ρ = 0). Consequently, 
this means that the diusion of the TP may be enhanced by the presence of bath par-
ticles on the lattice. Moreover, we observe that for given values of p1 and g, this extre-
mum of the function ρK ( ) may appear if the bias − −p p1 1 is large enough. This eect 
could be investigated in experimental situations (e.g. in microrheology) and could have 
interesting applications.

The discrepancy between the results from numerical simulations, which correspond 
to an exact sampling of the master equation (4), and the solution obtained using the 
decoupling approximations (equations (12) and (26)) is small, except in the domain 
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ρ0.05 0.15� � . However, the approximate solution still gives a good qualitative descrip-
tion of the evolution of K. The agreement is particularly good close to ρ = 0 and ρ = 1.

In what follows, we find the criterion on the parameters g and p1 allowing the emer-
gence of a maximum for ρK ( ). In addition, we show that the nonmonotonicity of the 
diusion coecient is actually correlated to the nonmonotonicity of the cross correla-
tion functions �gn in the domain n  <  0 (i.e. behind the TP).

6.3.2. Criterion for the existence of a maximum value of K.  In this section, we deter-
mine an explicit criterion for the existence of this maximum. This is equivalent to 
determining the parameters for which ρK ( ) has a positive derivative at the origin. We 
will then solve the equation:

Kd

d
0.0

ρ
=ρ=∣� (121)

If g is fixed, as the density ρ is related to f and g through ρ = +f f g/( ), this is equiva-
lent to considering K as a function of f and solving

Figure 2.  Stationary velocity V of the TP as a function of the density for dierent 
values of the desorption rate g obtained from numerical simulations (symbols) and 
from the decoupling approximation (lines). The bias is − =−p p 0.961 1  (top) and 

− =−p p 0.61 1  (bottom), the waiting times are τ τ= =* 1. The dashed line is the 

trivial mean-field solution ( )( )ρ= − −σ
τ −V p p 11 1 .
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K

f

d

d
0.f 0 ==∣� (122)

In what follows, we obtain the leading order term of K in an expansion in powers 
of f, the other parameters being constant. For simplicity, we introduce the quanti-

ties τ τ τ≡′ */  and δ≡ − −p p1 1. Assuming that the quantities ±A 1 have the following 
expansions

A A A f f ,
f

1
0

1
0

1
1 2= + +± ± ± O( )

→
( ) ( )

� (123)

and using equations (85) and (86), we obtain

δ τ
τ δ

τ δ
δ τ τ δ δ τ τ= + ± −

±
+ ±

+ + ± + + + +′
′

′
′ ′ ′ ′± O( )( )

( )
( ) ( ) ( )

→
A

g
g g g f f1 1

1

1 1
1 2 1 .

f
1

0 2
2 2 2 2 2 2

�
(124)

We can deduce from the expansions of ±A 1 the expansions of K±, r1 and r2 using equa-
tions (81)–(83). We then obtain the expansions of ±k 1 and ±�g 1 in powers of f using the 

Figure 3.  Stationary diusion coecient K of the TP as a function of the density 
for dierent values of the desorption rate g obtained from numerical simulations 
(symbols) and from the decoupling approximation (lines). The bias is − =−p p 0.961 1  
(top) and − =−p p 0.61 1  (bottom), the waiting times are τ τ= =* 1. The dashed 

line is the trivial mean-field solution ( )ρ= −σ
τ

K 1
2

2

.
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results from sections 5.1 and 5.2, and finally an expansion of K with equation  (49). 
These general expressions are too lengthy to be reproduced here, but we give them in 
the case τ =′ 1, which is the case we considered in our simulations:

⎡
⎣⎢

⎤
⎦⎥

σ
τ

δ
δ

= + +K
N g

D g
f f

2
1

,

,f 0

2
2O

( )
( )

( )
→� (125)

where

δ δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ

= − + − + − + + − +

− + + − − + − + + −

N g g g g

g g g g

, 2 4 3 16 3 5 4 3 4

4 2 4 3 4 4 2 ,

2 3 4 2 2 4 2 4 4 2

2 2 4 2 2 2 4 2 4 2

( ) [( ) ( ) ( ) ( )]

[ ( )( ) ( ) ( )]
�

(126)

δ δ δ δ= − + + +D g g g g, 2 2 2 4 .2 2 2 2 3( ) ( ) ( ) ( )� (127)

For any value of δ and g, δ >D g, 0( ) . For a given value of the bias δ, the critical value 
of g (denoted by gc) allowing K to reach a maximal value is then the solution of the 
equation:

δ =N g , 0,c( )� (128)
which can be determined numerically. We present the numerical solutions of equa-
tion (128) in figure 4 (curves in blue). On this figure, we also give the solutions obtained 
for other values of τ′. We conclude that, for a fixed value of the bias, K is nonmonotonic 
if the desorption rate g is large enough (or, for a fixed value of the desorption rate, if 
the bias is large enough).

6.3.3.  Influence of the cross correlations functions on the nonmonotonicity.  We now 
aim to give a first insight into a better understanding of the nonmonotonicity of the 
diusion coecient. We first notice that the diusion coecient K (equation (49)) may 
be separated into three contributions:

= + +K K K K ,MF 1 2� (129)
with

σ
τ

ρ= −K 1 ,MF

2

( )� (130)

σ
τ

ρ ρ= − − + −− −K p k p k ,1

2

1 1 1 1[ ( ) ( )]� (131)

� �
σ
τ

= − − − −K p g p g
2

.2 1 1 1 1( )� (132)

The first term is the trivial mean-field approximation of the problem, obtained by 
taking the average local densities kr equal to ρ and the cross correlation functions 

g Xr rt Xt
δ δη= +� ⟨ ⟩ equal to zero. K1 may be seen as a contribution from the inhomoge-

neous density profiles, and K2 a contribution from the cross correlations ±�g 1. For a given 
set of parameters which gives rise to a nonmonotonic behavior (p1  =  0.98 and g  =  0.15), 
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we plot in figure 5 K as well as the three contributions. The origin of the nonmonoto-
nicity of K with respect to the density ρ can then be attributed to K2.

The cross correlation functions �gn have nontrivial behaviors with respect to the 
distance n to the TP. In particular, they appear to have a nonmonotonous behavior in 
the domain n  <  0, i.e. behind the TP, for some values of the parameters. In figure 6, 
we plot the functions �gn for dierent values of the density ρ, for two sets of parameters: 
one for which the diusion K is known to be a nonmonotonic function of the density 
(p1  =  0.98 and g  =  0.2), and one for which it is monotonic (p1  =  0.98 and g  =  0.6). In 
figure 7, we plot the functions �gn for dierent values of the desorption parameter g, for 
ρ = 0.01, for p1  =  0.98. The nonmonotonicity of �gn with the distance to the TP then 
seems to be correlated with that of K with the density, as it occurs for small enough g.

In order to get a more quantitative comparison of these two eects (the nonmonoto-
nicity of K with respect to the density ρ and that of �gn with respect to the distance to 
the TP n in the domain n  <  0), we first determine, for a fixed value of the bias − −p p1 1, 
and at leading order in f, the critical value of ′gc giving a nonmonotonic behavior for �gn, 
i.e. for which � �>− −g g1 2.

Using the small f expansion of A 1±  (equation (124)), we easily deduce from the 
definitions of �gn in the domain n  <  0 (equation (92)) an expression for � �−− −g g1 2 at lead-
ing order in f. The general expression is too lengthy to be given here. We present it in 
the particular case where τ =′ 1:

� � σ
δ
δ

− = +
′
′− −g g f

N g

D g
f2

,

,f1 2 0

2O
( )
( )

( )
→� (133)

with

N g g g g

g g g g

, 1 2 2 2 1

4 1 3 2 1 1 ,

2 2 2

2 2 2 2

δ δ δ δ δ δ δ

δ δ δ δ δ δ

= − + − − − + −

− + + + − + − + −

′( ) ( )[( ) ( ) ( )]

[( ) ( )( ) ( )]� (134)

D g g g g g g g g

g g g

, 2 4 2 2 4 2 4

2 2 4 2 2 1 2 .

2 2 2 2 2

3 2 2

δ δ δ δ δ δ

δ δ δ δ δ

= + + + + + + + +

+ + + + + + + +

′

}
{( ) [ ( ) ( )]

( ) ( )( ) ( )
�

(135)

Then, for a fixed value of the bias δ, the critical value of g canceling � �−− −g g1 2 is the 
solution of the equation

δ =′ ′N g , 0.c( )� (136)

The numerical solutions for ′gc as a function of δ, for dierent values of the ratio τ′ are 
represented in figure 4 and compared to the values gc obtained by the criterion on K . 

The two functions gc and ′gc are comparable as long as τ′ is not too large. We also show 
that their expansions for δ 0→  are identical at leading order, and that they go to zero 

as δ+17 1 /82( ) .

This study indicates that the emergence of a maximal value for ρK ( ) for ρ> 0 is 
correlated to the observation of a minimal value in the cross correlation functions �gn in 
the domain n  <  0.
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In appendix G, for given values of the jump probability p1 and of the desorption 
parameter g, we study the range of densities �ρ0,[ ] for which the diusion coecient 
is greater than 1/2, which is its value when there is no bath particle. We also deter-
mine the range of densities �ρ ′0,[ ] for which � �− <− −g g 01 2 . The range of parameters for 

Figure 4.  Critical value of the desorption rate gc as a function of δ, for dierent 

values of the ratio τ τ τ=′ */ , with σ = 1 and τ = 1 obtained by the study of the 
behavior of K at →ρ 0 (curves in blue). The region below the curves correspond 
to the range of parameters where ( )ρK  is nonmonotonic. The critical value of the 

desorption rate ′gc for which the cross correlations �g  have the property � �>− −g g1 2 
is represented in green. The region below the curves correspond to the range of 
parameters where � �>− −g g1 2.

Figure 5.  Contributions in the expressions of K as a function of the density, for 
the parameters p1  =  0.98 and g  =  0.15.
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which K  >  1/2 is then shown to be correlated to the range of parameters for which 
� �− <− −g g 01 2 .

These two studies (from section 6.3.3 and appendix G) show that the nonmonoto-
nicity of the diusion coecient with respect to the density (emergence of a maximum 
value of K for ρ> 0) and the nonmonotonicity of the cross correlation function �gn 
behind the TP are correlated. A more detailed study of the cross correlation functions 
�gn, whose behavior aects the fluctuations of the TP position, could allow us to have a 
more physical understanding of the phenomenon highlighted in this section.

6.4. Third cumulant

The third cumulant of the distribution of Xt gives information about its asymmetry. 
We introduced earlier the coecient γ, defined by

t
X Xlim

1

6

d

d
.

t
t t

3γ = −
∞

⟨( ⟨ ⟩) ⟩
→

� (137)

Figure 6.  Cross correlation functions �g  as a function of the distance to the tracer 
n for g  =  0.2 (left) and g  =  0.6 (right), and for dierent values of the density ρ. In 
both cases, p1  =  0.98.

Figure 7.  Cross correlation functions �g  as a function of the distance to the tracer 
n for ρ = 0.01, p1  =  0.98, and for dierent values of the desorption parameter g.
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With this definition, if γ> 0 (resp. γ< 0), the distribution of Xt is expected to be 
skewed to the right (resp. to the left). Let us recall the situation of a biased random 
walker on a lattice in the absence of exclusion interactions. If the particle is more 
likely to jump to the right ( > −p p1 1), its third cumulant will be positive, indicating 
a distribution skewed to the right. Here, we study the influence of the presence of 
bath particles and of the dierent parameters of our model on the sign of the third 
cumulant of Xt.

We use the solutions for m 1
∼

±  (equations (108) and (109)) obtained from the decou-
pling approximation in order to compute the coecient γ from its definition (equation 
(77)). For two values of the bias (p1  =  0.98 and 0.8), we study the coecient γ as a 
function of the density ρ, for dierent values of the desorption rate g. The solutions 
of the equations obtained from the decoupling approximation are compared to results 
from numerical simulations. The curves are presented in figure 8. For high values of 
the desorption rate, γ ρ( ) is monotonic and decreases when the density of bath par-
ticles increases. However, for small values of the desorption rate, the function becomes 
nonmonotonic, and one observes the emergence of a minimum and a maximum value, 
dierent from the trivial extrema at ρ = 0 and ρ = 1. Finally, if g is small enough, there 
exists an interval of density for which γ becomes negative, which means that the dis-
tribution of Xt may actually be negatively skewed, the opposite to the situation where 
there is no bath particles on the lattice.

Comparing these predictions with results from numerical simulations, we show that 
the decoupling approximation oers a good prediction of the behavior of the third 
cumulant of the TP position in a wide range of parameters.

6.5. Cumulant generating function and propagator

For a given set of parameters, we solve the system of equations which determines ±�w 1 
implicitly (equation (120)), and we obtain the numerical values of ±� ( )w u1  for u vary-
ing in π π− ,[ ]. We represent the real and imaginary parts of w u1±� ( ) as functions of u in 
figure 9. The PDF Pt(x) in the long-time limit is obtained from equation (61).

We compare the results from this calculation with data obtained from Monte Carlo 
simulations for a given set of parameters (see figure 10). We observe a good agreement 
between the analytical prediction obtained from the decoupling approximation and the 
results from numerical simulations. We see that the prediction from the decoupling 
approximation tends to be shifted to the right for large times: this is expected from 
the analysis of the velocity of the TP, which was shown to be overestimated by the 
approximation (figure 2).

As emphasized in section  4.1, the rescaled variable Z X X X/ Vart t t t= −( ⟨ ⟩) ( ) is 

expected to be distributed according to a Gaussian distribution in the long-time limit. 
We plot in figure 11 the distribution P defined by

= =z Z zProb ,t tP( ) [ ]� (138)

and compare it with the normal distribution π−e / 2x /22
. At suciently long times, the 

distribution of the random variable Zt converges to the normal distribution of mean 
zero and unit variance. The rescaled position of the TP is then asymptotically Gaussian 
in the long-time limit.
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7. Conclusion

We studied the diusion of a biased tracer particle (TP) in a hardcore lattice gas in 
contact with a reservoir of particles. From the general master equation of the prob-
lem, we gave a detailed derivation of the equation satisfied by the fluctuations of the 
position of the TP and presented in a previous publication. This equation involves the 
density profiles around the TP and cross correlation functions, whose evolution equa-
tions are obtained in a closed form by resorting to mean-field type approximation.

Going one step further, we extended this approximation to higher-order correla-
tion functions in order to obtain the evolution equation verified by the cumulant gen-
erating function of the TP position. This equation then yields the entire probability 
distribution of the TP on a lattice of arbitrary dimension. We also obtained the equa-
tion satisfied by the third cumulant of the distribution, which gives information about 
its asymmetry.

We then solved these equations in the particular case of a one-dimensional lattice. 
We recall the result from [31]: the diusion coecient of the TP is a nonmonotonic 

Figure 8.  Coecient γ defined in equation  (137) as a function of the density 
for dierent values of the desorption rate g obtained from the decoupling 
approximation. The bias is − =−p p 0.961 1  (top) and − =−p p 0.61 1  (bottom). The 
waiting times are τ τ= =* 1. The dashed lines are the trivial mean-field solutions: 

( )( )ρ− −σ
τ −p p 1

6 1 1

3

.
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function of the density of bath particles. Counter-intuitively, it reaches a maximum 
value for a nonzero value of the density. Thus, the presence of bath particles on the 
lattice may actually enhance its diusion coecient. Here, we showed that this eect 
is related to an anomaly in the behavior of bath-tracer cross correlation functions, that 
are nonmonotonic functions of the distance to the TP. Another surprising observation 

Figure 9.  Real and imaginary parts of the generalized correlation functions 
w u1±� ( ), obtained from the resolution of the system (120), for the parameters 
ρ = 0.9, g  =  0.15, p1  =  0.98, τ τ σ= = =* 1.

Figure 10.  Probability distribution function of the TP position ( ) [ ]= =P x X xProbt t , 
for dierent times. The results from numerical simulations (symbols) are compared 
to the expression (61), the functions w u1±� ( ) being numerically computed as solutions 
of the system (120). The parameters are g  =  0.15, p1  =  0.98, ρ = 0.9.
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arises from analyzing the third cumulant of the TP position, which was shown to be 
nonmonotonic and to take negative values in a wide range of parameters. These ana-
lytical predictions were compared with exact numerical samplings of the master equa-
tion, which indicate that the approximation we used is accurate in a wide range of 
parameters.

We finally solved the equation  satisfied by the cumulant generating function, 
deduced the probability distribution and showed that the position of the TP rescaled 
by its fluctuations is Gaussian-distributed in the long-time limit.

The equations presented in this paper are very general and allow us to compute the 
cumulants of the TP position and therefore its distribution under a mean-field-type 
approximation which was shown to be accurate in a broad range of parameters. These 
equations are valid for lattices of arbitrary dimension. We leave to future work the 
study of their solutions on higher-dimensional lattices. It could be interesting to see 
if the results obtained on the one-dimensional lattice—enhanced diusion coecient, 
nonmonotonic and negative third cumulant, convergence of the rescaled distribution to 
a Gaussian distribution—can be extended to lattices of higher dimension, or observed 
in experimental systems.

Acknowledgments

OB acknowledges financial support from the European Research Council Starting 
Grant FPTOpt-277998.

Appendix A. Evolution equations of XXtt
22〈 〉

In this appendix, we give an explicit derivation of equation  (19), which governs the 
evolution of the second moment of Xt. We multiply the master equation (4) by ⋅X e1

2( )  

Figure 11.  Probability distribution of the rescaled variable 

Z X X X/ Vart t t t= −( ⟨ ⟩) ( ) at dierent times, obtained with the following 

parameters: ρ = 0.1, g  =  0.15, p1  =  0.98, τ τ σ= = =* 1. The black line is the 

normal distribution ( ) π−xexp /2 / 22 .
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and average over all the bath configurations η and all the positions of the TP X. We 
consider separately each term of the master equation:

	•	 the left-hand side term of (4) gives the contribution:

∑ τ η= ⋅ ∂
η
X e XC d P t2 * , ;

X
tL

,
1

2( ) ( )� (A.1)

⎛
⎝
⎜

⎞
⎠
⎟∑τ η= ∂ ⋅

η
X e Xd P t2 * , ;

X
t

,
1

2( ) ( )� (A.2)

d
X

t
2

d

d

t
2

τ= * ⟨ ⟩
� (A.3)

	•	 the first term of the right-hand side yields

∑ ∑ ∑ η η= ⋅ −
η µ

µ

= ≠ − µ

X e X XC P t P t, ; , ;
X r X e X

r

d

1
,

1
2

1 ,

,( ) [ ( ) ( )]� (A.4)

∑ ∑ ∑ ∑ η η= ⋅ −
µ η

µ

= ≠ − µ

X e X XP t P t, ; , ; .
X r X e X

r

d

1
2

1 ,

,( ) [ ( ) ( )]� (A.5)

		 Recalling that η µr,  a configuration obtained from η by exchanging the occupation 
variables of two neighboring sites r and + µr e , we obtain

∑ ∑η η=
η

µ

η
X XP t P t, ; , ; ,r,( ) ( )� (A.6)

		 and we conclude that C1  =  0.

	•	 the second term of the right-hand side of equation (4) gives the contribution:

⎡
⎣
⎢

⎤
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η η
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( ) ( ) ( )

( ) ( ) ( )
�

(A.7)

We consider for instance the term corresponding to µ = 1, and consider the first sum 
over X and η, in which we make the change of variable +X X e1← :

∑ η η⋅ − −
η
X e X eP t1 , ;

X
X

,
1

2
1( ) ( ) ( )� (A.8)

∑ σ η η= ⋅ + −
η

+X e XP t1 , ;
X

X e
,

1
2

1
( ) ( ) ( )� (A.9)
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∑ σ σ η η= ⋅ + + ⋅ −
η

+X e X e XP t2 1 , ; .
X

X e
,

1
2 2

1 1
[( ) ( )]( ) ( )� (A.10)

Finally, we get

∑ ∑η η η η⋅ − − − ⋅ −
η

µ
η

+ µ
X e X e X e XP t P t1 , ; 1 , ;

X
X

X
X e

,
1
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,
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∑ ∑σ η η σ η η= − + ⋅ −
η η

+ +X X e XP t P t1 , ; 2 1 , ; .
X

X e
X

X e
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, ,
11 1
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Following the same procedure for the term µ = −1 and noticing that the terms 
obtained for d2, ,µ= ± … ±  in (A.7) cancel, we finally get

C
d

p k t X g t

p k t X g t

2
1 2

1 2 ,

e e

e e
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2 1
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(A.13)

		 where we define

g t X .r X rt t
η= +( ) ⟨ ⟩� (A.14)

	•	 the third term of the right-hand side of equation (4) yields

∑ ∑ η η η η= ⋅ − −
η ≠
X e X XC dg P t P t2 1 , ; , ;

X r X
r

r
r3

,
1

2( ) [( ) ( ˆ ) ( )]� (A.15)
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η≠
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X r X
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r
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		 Recalling that ηrˆ  is the configuration obtained from η with the change η η−1r r← , 
we have the following equality

∑ ∑η η η η− =
η η

X XP t P t1 , ; , ; ,r
r

r( ) ( ˆ ) ( )� (A.17)

		 which yields C3  =  0.

	•	 for the same reason, the fourth term will have a zero contribution after multi-
plying by ⋅X e1

2( )  and averaging over X and η.

Finally, bringing together the dierent contributions originating from the dierent 
terms of equation (4), we obtain

d
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which is equivalent to equation (19):
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Appendix B. Evolution equations of ggrr�  and wwrr
∼

In this appendix, we start from the master equation (4) in order to derive the evolution 

equations satisfied by η= − +� ( ) ⟨( ⟨ ⟩) ⟩g t X Xr X rt t t
 (equation (24)) and η= +( ) ⟨ ⟩w u t; er X r

uXi t

t
 

(equation (62)). The derivations of these two evolution equations are similar, and we 
will present a general method to derive the evolution equation of the following correla-
tion function:

∑η η η≡ =
η

+ +
� F F( ) ⟨ ( ) ⟩ ( ) ( )Xf t X X P t, ; ,r X r

X
X rt

,
t� (B.1)

where F  is a generic function of the TP position. The equations satisfied by �gr and �wr will 

be obtained by taking X X Xt= −F( ) ⟨ ⟩ and =X e uXiF( )  respectively. Parenthetically, 
with this method, one retrieves the equation satisfied by k tr( ) (equation (8)) by taking 

=X 1F( ) .

We multiply the master equation (4) by η +X X rF( )  and average over all the bath 
configurations η and all the positions of the TP X. We consider separately each term 
of the master equation:

	•	 the left-hand side term of (4) gives the contribution:

∑ η τ η= ∂
η

+ XC X d P t2 * , ;
X

X r tL
,
F( ) ( )� (B.2)

∑τ η η= ∂
η

+ Xd X P t2 * , ;
X

X r t
,
F( ) ( )� (B.3)

∑ η η η= ∂ − ∂
η

+ X XX P t P t X, ; , ;
X

X r t t
,

F F[ ( ( ) ( )) ( ) ( )]� (B.4)

		 In the two cases we will consider, we note that ∂ XtF( ) is independent of X and 

η, so that we obtain

⎡
⎣
⎢

⎤
⎦
⎥∑ ∑τ η η τ η η= ∂ − ∂

η η
+ +X XC d X P t d X P t2 * , ; 2 * , ;

X
X r

X
X rt tL

, ,
F F( ) ( ) ( ) ( )� (B.5)

�τ τ= ∂ − ∂d f t d k t X2 * 2 *r rt tF( ) ( ) ( )� (B.6)
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		 where we defined �fr in equation (B.1). We consider separately the two dierent 

possible expressions of F :

	 –	 if = −F( ) ⟨ ⟩X X Xt , then

X
X

t

d

d
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t∂ = −F( ) ⟨ ⟩
� (B.7)

		  and, using equation (6), we obtain
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	 –	 if =X e uXiF( ) , then ∂ =X 0tF( ) , and we have the following expression of CL:

�τ= ∂C d w t2 * .rtL ( )� (B.9)

	•	 the first term of the right-hand side of the master equation becomes
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		 With an appropriate change of variable in the sum over η, we obtain
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		 so that C1 is written
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		 We consider the sum over ′r
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		 Recalling that η µr,  is a configuration obtained from η by exchanging the occupa-
tion variables of two neighboring sites r and + µr e , we obtain the general relation
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		 We then consider separately the two cases:
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	 –	 if = νr e  (ν ∈ ± … ±{ }d1, , ), using equations (B.13) and (B.14), we obtain

∑ η η η η− = ∇ + ∇µ
µ µ

≠ −
+ + + − +

′

′

µ

,
r X e X
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X r X r X r X r

,
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		  where the operator ∇µ was defined in the main text (equation (9)). We finally obtain

∑ ∑ η η η= ∇ + ∇
η µ

µ µ
=

+ − + XC X P t, ;
X

X r X r

d

1
, 1
F( ) ( ) ( )� (B.16)

∑ η= ∇
µ

µ +F⟨ ( ) ⟩X X r� (B.17)

�∑= ∇
µ

µf t ,r( )� (B.18)

		  where the sum over μ runs over ± … ±{ }d1, , .

	 –	 if = νr e , using again equations (B.13) and (B.14), we obtain

∑ ∑ ∑η η η η− = ∇ − ∇
µ

µ

µ
µ ν

= ≠ −
+ + + − +

′

′

µ
ν ν ν ν

.
r X e X

r
X e X e X e X e

d

1 ,

,[( ) ]� (B.19)

		  Then, C1 becomes

C X X e1

⎛
⎝
⎜

⎞
⎠
⎟∑ η= ∇ − ∇

µ
µ ν− + ν

F⟨ ( ) ⟩� (B.20)

� �∑= ∇ − ∇
µ

µ ν−ν ν
f t f te e( ) ( )� (B.21)

		�  Finally, for any value of r, equations  (B.18) and (B.21) are recast under the 

equation

�
⎛
⎝
⎜

⎞
⎠
⎟∑ δ= ∇ − ∇

µ
µ µ−µC f t .r e r1 , ( )� (B.22)

	•	 we then study the second term of the right-hand-side of the master equation (4), 
which yields the contribution

∑ ∑τ
τ

η

η η η η

=

× − − − −
η µ

µ

µ

+

+ µ
X e X

C
d

p X

P t P t

2 *

1 , ; 1 , ;

X
X r

X X e

2
,

F( )

[( ) ( ) ( ) ( )]
�

(B.23)
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⎧
⎨
⎩

⎫
⎬
⎭

∑ ∑

∑ ∑

τ
τ

η η η

η η η

= − −

− −

η µ
µ µ

η µ
µ

+

+ + µ

X e

X

d
p X P t

p X P t

2 *
1 , ;

1 , ;

X
X r X

X
X r X e

,

,

F

F

( ) ( ) ( )

( ) ( ) ( )
�

(B.24)

		 With the change of variable + µX X e←  in the first sum, and recalling that 
= +X eX 1, we obtain

⎧
⎨
⎩

⎫
⎬
⎭

∑ ∑

∑ ∑

τ
τ

σ η η η

η η η

= + ⋅ −

− −

η µ
µ µ

η µ
µ

+ + +

+ +

µ µ

µ

e e X

X

C
d

p X P t

p X P t

2 *
1 , ;

1 , ; .

X
X r e X e

X
X r X e

2
,

1

,

F

F

( ) ( ) ( )

( ) ( ) ( )
�

(B.25)

	 From this relation, we consider separately the dierent expressions of F :

	 –	 in the situation where X X Xt= −F( ) ⟨ ⟩, we obtain

e e X

X

C
d

p X X P t

p X X P t

2
1 , ;

1 , ;

X
X r e X e

X
X r X e

t

t

2
,

1

,

⎧
⎨
⎩

⎫
⎬
⎭

∑ ∑

∑ ∑

τ
τ

σ η η η

η η η

= + ⋅ − −

− − −

η µ
µ µ

η µ
µ

+ + +

+ +

µ µ

µ

*
( ⟨ ⟩) ( ) ( )

( ⟨ ⟩) ( ) ( )
�

(B.26)

⎧
⎨
⎩

⎫
⎬
⎭
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σ η η η

= − ∇ −
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η µ
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η µ
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+ +

+ + +
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( ⟨ ⟩) ( ) ( )

( ) ( ) ( )
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d
p X X P t
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2
1 , ;

1 , ; .

X
X r X e

X
X r e X e

t
,

,
1

�

(B.27)

		  As ⋅µe e1 is equal to ±1 for µ= ±1 and 0 otherwise, we finally obtain

C
d

p X X

d
p p

2
1

2
1 1 .

X e X r

X e X r e X e X r e

t t2

1 1

t t

t t t t1 1 1 1

∑τ
τ

η

τ
τ
σ η η η η

= − − ∇

+ − − −

µ
µ + +

+ + + − + + +

µ

− −

*

*

⟨( ⟨ ⟩)( ) ⟩

[ ⟨( ) ⟩ ⟨( ) ⟩]
�

(B.28)

	 –	 in the situation where =X e uXiF( ) , we obtain

⎧
⎨
⎩

⎫
⎬
⎭

∑ ∑

∑ ∑

τ
τ

η η η

η η η

= −

− −

η µ
µ

σ

η µ
µ

⋅
+ + +

+ +
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µ µ

µ

X

X

C
d

p P t
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2 *
e e 1 , ;

e 1 , ;

X

e e
X r e X e

X
X r X e
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2
,

i i

,

i

1 ( ) ( )

( ) ( )

( )

�

(B.29)
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∑ ∑τ
τ

η η η η= − −
η µ

µ
σ

+
⋅

+ + +µ
µ

µ
X

d
p P t

2 *
e 1 e , ;

X
X e

e e
X r e X r

uX u

,

i i 1( ) [ ] ( )( )
� (B.30)

∑ ∑

∑ ∑

τ
τ

η η η

τ
τ

η η η

= − ∇
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η µ
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η µ
µ

σ
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+
⋅
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d
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d
p P t
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e 1 , ;

2 *
e 1 e 1 , ; .

X
X e X r

X
X e

e e
X r e

uX

uX u

,

i

,

i i 1

( ) ( )

( )( ) ( )( )
�

(B.31)

		  As ⋅µe e1 is equal to 1±  for 1µ= ±  and 0 otherwise, we finally obtain

C
d

p

d
p

2
e 1

2
e 1 e 1 .

X e X r

X e X r e

uX

u uX

2
i

1

i i

t

t t

t

t t

∑

∑

τ
τ

η

τ
τ

η η

= − ∇

+ − −

µ
µ

σ

+ +

=±
+ + +

µ

ε
ε

ε
ε ε

〈 ( ) 〉

( )〈 ( ) 〉

*

*�

(B.32)

	•	 the third term yields the contribution C3:

∑ ∑η η η η η= − −
η

+
≠′

′
′

′X XC dg X P t P t2 1 , ; , ;
X

X r
r X

r
r

r3
,

t
F( ) [( ) ( ˆ ) ( )]� (B.33)

∑ ∑ ∑ η η η η= −
η≠

+ +
′

′
′ Xdg X P t2 , ; ,

X r X
r

r
X r X rF( ) [( ˆ ) ] ( )� (B.34)

		 where we used again equation  (B.11). By the definition of η ′rˆ  (configuration 
obtained from η with the change η η−′ ′1r r← ), we write

⎧
⎨
⎩

η
η
η

=
≠

− =
′
′

′ x r

x r

if ,

1 if .
r
x

x

x

( ˆ )
 
 � (B.35)

		 The expression for C3 becomes

∑ ∑ η η η= −
η

+ + XC dg X P t2 1 2 , ; .
X

X r X r3 F( ) ( ) ( )� (B.36)

		 As η ∈+ 0, 1X r { }, then η η=+ +X r X r
2( ) , and we finally obtain

�= −C dg f t2 r3 ( )� (B.37)

	•	 the computation of the contribution C4 of the fourth term of the master equa-
tion is similar to that of C3, and we obtain

∑ ∑ η η η= − −
η

+ + XC df X P t2 1 1 2 , ; .
X

X r X r4 F( ) ( )( ) ( )� (B.38)
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Using again η η=+ +X r X r
2( ) , we obtain

η η η− − = −+ + +1 1 2 1 ,X r X r X r( )( )� (B.39)

and, finally,

= − �F{⟨ ( )⟩ ( )}C df X f t2 .rt4� (B.40)

Note that when = −F( ) ⟨ ⟩X X Xt , then =F⟨ ( )⟩X 0t .
Finally, writing from the master equation (4) we obtain the relation

= + + +C C C C C ,L 1 2 3 4� (B.41)
and we obtain the evolution equations satisfied by �g tr( ) and �w tr( ):
	•	 using (B.8), (B.22), (B.28), (B.37) and (B.40), we get

∑
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τ δ

τ
τ

δ η η

τ
τ
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t
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t t t t1 1 1 1

1 1

�
(B.42)

which is equivalent to equation (24) presented in the main text.

	•	 using (B.9), (B.22), (B.32), (B.37) and (B.40), we get

d w u t w u t d f g w u t df

d
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d
p

2 ; ; 2 ; 2 e

2
e 1

2
e 1 e 1

r r e r r
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⎛
⎝
⎜

⎞
⎠
⎟∑

∑

∑
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τ
τ

η η
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τ
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∂ = ∇ − ∇ − + +

+ − ∇
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µ
µ µ

µ
µ µ

σ

−

+ +

=±
+ + +
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ε
ε

ε
ε ε

*

*

*

( ) ( ) ( ) ( ) ⟨ ⟩

⟨ ( ) ⟩

( )⟨ ( ) ⟩
�

(B.43)

which is equivalent to equation (62), presented in the main text.

Appendix C. Explicit expressions of gg11�  and g 1−�  in one dimension

In this appendix, we solve the linear system of four equations  satisfied by α, β, �g1 
and �−g 1, obtained by substituting equation (91) into equation (89), equation (92) into 
equation (90), and writing equation (91) for n  =  1 and equation (92) for n  =  −1. From 
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equation (91) written with n  =  1, and using the definition of W from equation (93), we 
obtain the following expression of α in terms of �g1 and �−g 1:

� �
⎛
⎝
⎜

⎞
⎠
⎟α =

−
+ +

−
+

−− −

−

−
−

a

A r A r r

a

A r A r
g

a

A r A r
g

/

1

/ /
,0

1 1 1 1 1

1

1 1 1 1
1

1

1 1 1 1
1� (C.1)

where the coecients a0 and ±a 1 are defined by

⎡
⎣
⎢

⎛
⎝
⎜

⎞
⎠
⎟

⎤
⎦
⎥τ

τ
σ ρ ρ= − − − − − − −+ + −

− −a K p K r r p
K

r
r

2 *
1 1 1 10 1 1 1 1

1
1

1( )( ) ( )� (C.2)

τ
τ

= − −+a p K r
2 *

11 1 1( )� (C.3)

τ
τ

= − −− − +
−a p K r

2 *
1 .1 1 1

1( )� (C.4)

Similarly, from equation (92) written with n  =  −1, and using the definition of ′W  from 
equation (94), we obtain the following expression of β in terms of �g1 and �−g 1:

� �
⎛
⎝
⎜

⎞
⎠
⎟β = −

−
−

−
+ −

−− −

−

−
−

b
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A r A r
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b

A r A r
g

/ / /
,0
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1 2 1 2
1 2

1

1 2 1 2
1� (C.5)

where the coecients b0 and b 1±  are defined by

⎡
⎣
⎢

⎛
⎝
⎜

⎞
⎠
⎟

⎤
⎦
⎥τ

τ
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− −b K p K r r p
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2 *
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1
2

1( )( ) ( )� (C.6)

τ
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= − −−b p K r
2 *

11 1 2( )� (C.7)

τ
τ
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−b p K r

2 *
1 .1 1 2

1( )� (C.8)

In the boundary conditions (equations (92) and (90)), replacing �g2 and �−g 2 by

� α= −
− −

−g r
W

A r A r
r

2
2 1

2

1 1 1 1
1 1

2
� (C.9)

�
β

= +
−

′
−

−
−g

r

W

A r A r r

2 1
,2

2
2

1 2 1 2
1

2
2� (C.10)

and using the expression of α and β in terms of �g1 and �−g 1 (equations (C.1) and (C.5)), 
we obtain the following closed system of linear equations satisfied by �g1 and �−g 1:

� �
� �

⎧
⎨
⎩

+ =
+ =

−

−

Ag Bg C

Dg Eg F
1 1

1 1
� (C.11)
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where we define
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and
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Solving the linear system given in equation (C.11), it is finally found that:

� �=
−
−

=
−
−−g

CE BF

AE BD
g

AF CD

AE BD
and .1 1� (C.18)

K+ , K−, A1 and A−1 have been determined in section 5.1. Using their expressions, 
we compute �g1 and �−g 1, and finally compute K with the formula:
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ρ ρ
σ
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− −K p K r p K r p g p g
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1 1 .
2

1 1 1 2
1

1 1 1 1( ( ) ( )) ( )� (C.19)

Note that α and β can be deduced straightforwardly from their relations with �g1 and 
�−g 1 (equations (C.1) and (C.5)).

Appendix D. Explicit expressions of mm11
∼  and mm 11

∼
−  in one dimension

In the main text we showed that, for n  >  0, ∼mn had the following form
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and where the quantities +C1  and +C 2  are defined by
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The expression for the coecient α was given in appendix C (equation (C.1)) and 

we defined α ≡ −′ −
−W A r A r/ 1 1 1 1

1( ).
For n  <  0, a similar resolution leads to the expression
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and where the quantities −C1  and −C 2  are defined by
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and
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τ
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The expression of the coecient β was given in appendix C (equation (C.5)) and we 

defined β = −′ ′ −
−W A r A r/ 1 2 1 2

1( ).
As explained in the main text, we finally obtain a linear system of four equations with 

unknowns ∼m1, 
∼

−m 1, Γ and δ (equation (107)), involving the following quantities:

τ
τ

=
−

− −
−

− +M
r

A r A r
p K r

2 *
1 113

1

1 1 1 1
1 1 1[ ( ) ]� (D.11)

τ
τ

=
−

−
−

− +
−M

r

A r A r
p K r

2 *
114

1

1 1 1 1
1 1 1

1( )� (D.12)

τ
τ

= −
−

−
−

− −M
r A r A r

p K r
2 * 1 1

123
2 1 2 1 2

1 1 2( )� (D.13)

τ
τ

= −
−

− +
−

− − −
−M

r A r A r
p K r

2 * 1 1
1 124

2 1 2 1 2
1 1 2

1[ ( ) ]� (D.14)

⎛
⎝
⎜

⎞
⎠
⎟τ

τ
τ
τ

= − + + + +
−

−−
−

− +
* *

( ) ( )M A f g p k
A

A r A r
p K r2

2 2 2
133 1 1 2

1

1 1 1 1
1 1 1� (D.15)

τ
τ

τ
τ

= +
−

−−
−

− − +
−M p k

A

A r A r
p K r

2 * 2 * 2
134 1 1

1

1 1 1 1
1 1 1

1( )� (D.16)

τ
τ

τ
τ

= −
−

−−
−

−
− −M p k

A

A r A r
p K r

2 * 2 * 2
143 1 1

1

1 2 1 2
1 1 2( )� (D.17)

http://dx.doi.org/10.1088/1742-5468/2015/11/P11016


Distribution of the position of a driven tracer in a hardcore lattice gas

49doi:10.1088/1742-5468/2015/11/P11016

J. S
tat. M

ech. (2015) P
11016

⎛
⎝
⎜

⎞
⎠
⎟τ

τ
τ
τ

= − + + + −
−

−− −
−

−
− − −

−M A f g p k
A

A r A r
p K r2

2 * 2 * 2
144 1 1 2

1

1 2 1 2
1 1 2

1( ) ( )
�

(D.18)

ψ
=

−
−

+ − +

−
−Y

a A r

A r A r

2
1

1 1

1 1 1 1
1� (D.19)

ψ
= −

−

−
− −

−

−
−Y

a A r

A r A r

2
2

1 2
1

1 2 1 2
1� (D.20)

ϕ
ψ

= − −
− +

−
+ −

−
−

−
−Y A

a A r A r

A r A r
2

3
3 1 1

1 1 1 1
1

1 1 1 1
1

( )
� (D.21)

ϕ
ψ

= − −
− +

−− −
− −

−
−

−
−Y A

a A r A r

A r A r
2

3
4 1 1

1 2 1 2
1

1 2 1 2
1

( )
� (D.22)

Appendix E. Equations satisfied by ww uu11
∼
± ( ): additional definitions

In this appendix, we give the explicit expressions for the coecients Bj, Cj, Dj, Ej 
involved in equation (120).
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Appendix F. Algorithm and numerical methods

To sample exactly the master equation (4), we generate a sequence of random num-
bers τ µx, ,( ) with the joint probability density function τ µp x, ,( ) where τ µ τp x, , d( )  is 
the probability at time t that the next event occurs in the infinitesimal time interval 
τ τ τ+ + +t t, d[ ], at site x, and is of type μ (i.e. a diusion event, an absorption event 

or a desorption event). We write

τ µ τ τ µ τ=p x p p x p x, , , ,1 2 3( ) ( ) ( ∣ ) ( ∣ )� (F.1)
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where

	•	 τ τp d1( )  is the probability at time t that the next event occurs in the time interval 

τ τ τ+ + +t t, d[ ].
	•	 τ τp x d2( ∣ )  is the probability that the next event occurs at site x, knowing that it 

occurs during the time interval τ τ τ+ + +t t, d[ ].
	•	 µ τ τp x, d3( ∣ )  is the probability that the next event is of type μ knowing that it 

occurs during the time interval τ τ τ+ + +t t, d[ ] and at site x.

Writing as µcx,  the transition rate of event μ at site x, we define

∑≡
µ

µr c ,x x,� (F.2)

∑≡R r .
x

x� (F.3)

rx is then the total rate of the events at site x, and R is the total rate of all the events 
on all lattice sites. The quantities τ, x and μ are then respectively drawn from the fol-
lowing distributions:

τ = τ−p Re ,R
1( )� (F.4)

τ =p x
r

R
,x

2( ∣ )� (F.5)

µ τ = µ
p x

c

r
, .

x

x
3

,( ∣ )� (F.6)

The algorithm is as follows. We build a lattice of length 2L  +  1 (the spacing of the lat-
tice σ is taken as equal to 1). The boundary conditions are periodic, and L is chosen to 
be large enough so that we can consider the lattice as infinite (in the results presented 
below, L 250⩾ ). The initial condition is the following: the TP is initially at the origin 
and at each site dierent from the origin, a particle is set with probability ρ. We chose 
a final simulation time tmax. At each step of the simulation, and as long as <t tmax, the 
algorithm follows these steps:

	(i)	 Set R  =  0.

	(ii)	 For each ∈ +x L0, 2 1[ ], compute rx:

	•	 if the site x is occupied by a bath particle, three events are possible: a jump to the 

left, a jump to the right, or a desorption event (respectively labeled as 1, 2 and 

3). The associate rates µcx,  are

η= − − −c g
1

2
1 1x x,1 1( )( )� (F.7)
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η= − − +c g
1

2
1 1x x,2 1( )( )� (F.8)

=c gx,3� (F.9)
so that η η= − − + − − +− +r g g g1 1 1 1x x x

1

2 1
1

2 1( )( ) ( )( ) .

	•	 if the site x is occupied by the TP, two events are possible: a jump to the left, or 
a jump to the right. The local rate is then η η= − − + −− +r p p1 1 1x x x1 1 1 1( )( ) ( ).

	•	 if the site is empty, the only possible event is an absorption event, and rx  =  f.

	(iii)	Compute the total rate = ∑R rx x.

	(iv)	Draw τ from the distribution τ = τ−p Re R
1( ) .

	(v)	 Draw x from the distribution τ =p x r R/x2( ∣ ) .

	(vi)	Draw the event μ from the distribution µ τ = µp x c r, /x x3 ,( ∣ ) .

	(vii)	Update the lattice occupation after the realization of the event (note that such an 
algorithm is rejection-free).

	(viii)	 Increase the time τ+t t← .

We finally keep track of the TP position Xt with time. With a large number of real-
izations, we sample the PDF of Xt.

Appendix G. Range of parameters for which KK 11 22> /

In section 6.3.3, we determined the critical value of the desorption rate gc allowing the 
emergence of a nontrivial maximum value for the function ρK ( ) for a given value of 
the bias δ. As a complementary approach, for a fixed value of the bias, we study the 
domain of the plane ρg,( ) in which the diusion coecient is greater than 1/2 , which 
is its value when there is no bath particle.

In the case where the curve ρK ( ) displays an extremum value, the value of the 
diusion coecient is greater than 1/2 in the range �ρ0,[ ], where �ρ  is a function of p1 
and g only. From the analytical curves ρK ( ), we can then deduce the values of �ρ  as a 
function of g for dierent values of p1, which are plotted on figure G1.

As was shown on figure 7, for a given value of p1 and g, there exists a value of ρ 
below which the dierence � �−− −g g1 2 is negative, i.e. below which there is a minimum for 
�gn in the range n  <  0. This critical value of ρ will be denoted by �ρ ′. In order to compare 
the domain of parameters giving respectively >K 1/2 and � �−− −g g 01 2 ⩾ , we also repre-
sent on figure G1 the curves of �ρ ′ as a function of g for dierent values of p1.

The domains in the plane ρ g,( ) for which K  >  1/2 and for which � �− <− −g g 01 2  then 
seem to be correlated.
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