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We consider a discrete model in which a tracer performs a random walk biased by an external force, in a
dense bath of particles performing symmetric random walks constrained by hard-core interactions. We
reveal the emergence of a striking velocity anomaly in confined geometries: in quasi-1D systems such as
stripes or capillaries, the velocity of the tracer displays a long-lived plateau before ultimately dropping to a
lower value. We develop an analytical solution that quantitatively accounts for this intriguing behavior. Our
analysis suggests that such a velocity anomaly could be a generic feature of driven dynamics in quasi-1D
crowded systems.
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In various physical and biological systems one encoun-
ters the situation when either an active particle or a particle
subject to an external force travels through a quiescent host
medium. A few stray examples include self-propelled
particles in crowded environments, such as molecular
motors, motile living cells or bacteria [1–3], or charge
carriers biased by an external field [4,5]. Determining the
dynamics of such a driven particle—called the tracer
particle (TP) in what follows—in a host medium which
hinders its motion is a challenging problem with important
applications.
In particular, it constitutes a recurrent question of non-

equilibrium statistical mechanics, arising in the quest of
fundamental fluctuation-dissipation relations [6–8]. It is
also the basis of the so-called active microrheology, which
monitors the response of a medium while in the presence of
a TP manipulated by an external force. Within recent years,
this experimental technique has become a powerful tool for
the analysis of such diverse systems as colloidal suspen-
sions [9–13], glass forming liquids [14–18], fluid interfaces
[19], or live cells [20,21]. A considerable amount of
knowledge has been acquired on the forms of the so-called
force-velocity relation vðFÞ—the dependence of the TP
velocity v on the value of the applied force F.
The question of the behavior beyond the force-velocity

relation was recently addressed in [15]. In this work, the
dynamics of an externally driven TP in a glass-forming
liquid was studied via molecular dynamics simulations. It
was realized that although the TP is ultimately moving with
a constant velocity v along the bias, (i.e., hXti ∼ vt), the
variance σ2x ¼ hðXt − hXtiÞ2i of its position grows surpris-
ingly in a superdiffusive manner, σ2x ∼ tλ, with λ being
within the range 1.3–1.5 (see also [16,18] for related
studies).
A superdiffusive growth of the variance of the TP

position along the bias has been established analytically

in a simple discrete model. In this model, the tracer
performs a random walk biased by an external force, in
a dense bath of particles performing symmetric random
walks constrained by hard-core interactions [22–24]. In this
model, the motion of the TP is mediated by successive
visits of vacancies whose density is denoted ρ0 ¼ 1 − ρ,
where ρ is the density of bath particles. It was found that in
2D and quasi-1D systems such as stripes or capillaries
(see Fig. 1), there exists a long-lived superdiffusion induced
by the anomalous return statistics of the vacancies to the TP
position, crossing over to a diffusive behavior after a time
t× ≃ 1=ρ20. The complete time evolution of the variance
was found to display a scaling behavior as a function of
the scaled variable ρ20t, noted in Fig. 2 (inset) in the
quasi-1D case.
Here, within the framework of the lattice gas model of

[22–24], we show that in confined geometries not only the
variance but already themean of the TP displacement, (and,
hence, the TP velocity v ∼ hXti=t itself), displays a striking
anomaly, which has not apparently been noticed as of yet.
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FIG. 1 (color online). A sketch of the confined geometries used
in the numerical simulations and in the theoretical modeling
(top: stripelike, bottom: capillarylike). Boundary conditions are
periodic along directions 2 and 3. The TP, in red, is the only
particle subject to the external force F.
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We find that in dense systems the temporal evolution of the
TP velocity consists of two distinct, clearly separated
regimes: after a short transient v attains first a long-lived
“high” constant value which persists up to times of order of
t× ∼ 1=ρ20 and then rather abruptly drops to a terminal
“low” constant value. This unexpected behavior, obtained
from Monte Carlo numerical simulations in quasi-1D
stripes, is plotted in Fig. 2 for several vacancy densities
ρ0, as a function of the rescaled variable ρ20t, as suggested
by the scaling behavior of the variance. In this Letter we
(i) calculate analytically the mean position of the TP in
quasi-1D systems like stripes and capillaries in the dense
limit ρ0 → 0, (ii) quantitatively account for the intriguing
velocity anomaly reported above numerically, (iii) show
that such an anomaly takes place beyond the linear
response (in the linear response both velocities are equal),
and (iv) show that it occurs only in quasi-1D systems, in
contrast to superdiffusion which is observed in both quasi-
1D and 2D systems, which implies that the velocity
anomaly and the superdiffusive growth of the variance
are not controlled by the same criteria.
The model.—We consider a quasi-1D system in dimen-

sion d ∈ f2; 3g, infinite in the direction 1, and finite with
periodic boundary conditions in the other direction(s)
(typically a two-dimensional stripe or a three-dimensional
capillary; see Fig. 1). The lattice sites are occupied by hard-
core particles, with density ρ, performing symmetric
random walks, with the restriction that the occupancy
number of each site is at most equal to 1 [25]. The vacancy
density ρ0 ≡ 1 − ρ is assumed to be very small (see [26] for
a recent study in the opposite dilute limit ρ ≪ 1). The TP is
initially placed at the origin and performs a random walk
biased by an external force F ¼ Fe1. In the usual fashion,

the TP jump probability in direction ν is given by
pν ¼ exp ð1

2
βσF · eνÞ=

P
μ∈f�1;…;�dg expð12βσF · eμÞ, where

β is the inverse temperature and σ is the characteristic
length of a single move.
More precisely the dynamics is as follows. At each time

step t, each vacancy moves according to the following
rules: (i) If the TP is not adjacent to the vacancy, one
neighbor is randomly selected and exchanges its position
with the vacancy; (ii) otherwise, if the TP is at position Y
and the vacancy at position Y þ eν, the TP exchanges its
position with the vacancy with probability pν=½ð1 −
1=2dÞ þ pν� and with probability 1=ð2d − 1þ 2dpνÞ with
any of the 2d − 1 other neighbors; (iii) events involving two
vacancies at the same site or on neighboring sites are of
order Oðρ20Þ and do not contribute in the dense limit we
consider here.
In the spirit of Refs. [27,28] where tracer diffusion in the

absence of bias was studied, we first consider an auxiliary
problem involving a single vacancy, starting from site Y0.
The TP, initially at site 0, can move only by exchanging its
position with the vacancy. For the sake of simplicity, we
first present in detail the particular case where the applied
force is strong enough for the TP motion to be directed, so
that p1 ¼ 1 and pν≠1 ¼ 0. Results in the general case of
arbitrary force, obtained along the same method, will be
given next. The single-vacancy propagator Pð1Þ

t ðXjY0Þ
defined as the probability for the TP to be at site X ¼
pe1 at time t can be written as

Pð1Þ
t ðXjY0Þ ¼ δp;0

�
1 −

Xt

j¼0

F�
jðY0Þ

�

þ
Xþ∞

m1¼1

…
Xþ∞

mp¼1

Xþ∞

mpþ1¼0

δm1þ���þmpþ1;t

×

�
1 −

Xmpþ1

j¼0

F�
jð−e1Þ

�
F�
mp
ð−e1Þ × � � �×

F�
m2
ð−e1ÞF�

m1
ðY0Þ; ð1Þ

where F�
t ðY0Þ is the probability that the vacancy, which

starts its random walk at the site Y0, arrives at the origin 0
for the first time at the time step t, and where the second
sum in Eq. (1) is equal to zero if p ≤ 0. The first term in the
right-hand side of Eq. (1) represents the event that at time t,
the TP has not been visited by the vacancy, while the
second one results from a partition on the waiting times
mj between the successive visits of the TP by the vacancy.
The Fourier-Laplace transform of the single-vacancy
propagator is then easily found to be given by

~̂P
ð1ÞðkjY0; ξÞ ¼

1

1 − ξ

�
1þ F̂�ðY0; ξÞðeik1 − 1Þ

1 − eik1F̂�ðe−1; ξÞ

�
; ð2Þ

FIG. 2 (color online). Main plot: rescaled mean position of the
TP as a function of rescaled time ρ20t, from numerical simulations
in a 2D stripe with L ¼ 3 and an infinite external force. The
dashed lines are the values of the velocity in the two limit regimes
(see main text). Inset: rescaled variance as a function of rescale
time for the same system. The solid line is the analytical
prediction from [24]. The number of realizations in numerical
simulations ranges from 102 (for high ρ0) to 105 (for low ρ0).
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where the discrete Laplace transform of a time-dependent
function ϕðtÞ has been denoted by ϕ̂ðξÞ ¼ P∞

t¼0 ϕðtÞξt and
the Fourier transform of a space-dependent function ψðrÞ
by ~ψðkÞ ¼ P

re
ik·rψðrÞ.

The second step of the calculation consists of reducing in
the dense limit ρ0 → 0 the full problem to the single-
vacancy problem. This is conveniently done by starting
from a finite number M of vacancies, of initial positions
Yð1Þ

0 ; � � � ;YðMÞ
0 on a finite lattice of N sites. The key point is

that, in the limit ρ0 ¼ M=N → 0, the vacancies contribute
independently to the motion of the TP [28], so that the full
propagator can be written to leading order in ρ0 in terms of
the single vacancy propagator,

PtðXjYð1Þ
0 ;…;YðMÞ

0 Þ ∼
ρ0→0

X
Xð1Þ

0

� � �
X
XðMÞ

0

δ
X;Xð1Þ

0
þ���þXðMÞ

0

×
YM
j¼1

Pð1Þ
t ðXðjÞ

0 jYðjÞ
0 Þ: ð3Þ

Averaging next over the initial positions of the vacancies,
taking the Fourier transform and finally going to the
thermodynamic limit, the logarithm of the Fourier trans-
form of the propagator can be written to leading order in ρ0
as ln ~PtðkÞ ∼

ρ0→0
− ρ0ΩtðkÞ, where

Ω̂ðk; ξÞ ¼
�

1

1 − ξ
− eik1 ~̂P

ð1Þðkje−1; ξÞ
�X
Y≠0

F̂�ðY; ξÞ: ð4Þ

Noting that the mean position of the TP in the direction of
the bias is given by

hXiðξÞ ∼
ρ0→0

iρ0
∂Ω̂
∂k1

����
k¼0

; ð5Þ

it is finally found to leading order in ρ0 that

hXiðξÞ ∼
ρ0→0

ρ0
P

Y≠0F̂
�ðY; ξÞ

ð1 − ξÞ½1 − F̂�ðe−1; ξÞ�
: ð6Þ

The last step of the calculation consists of determining the
large time behavior of the first-passage time densities F�,
or, equivalently, the behavior ξ → 1 of their discrete
Laplace transform F̂� involved in Eq. (6). Since the
vacancy performs a symmetric random walk except in
the very vicinity of the TP site, it is conveniently done by
applying standard methods of random walks with defective
sites described in [29], the defective sites being here the site
occupied by the TP and its nearest neighbors. Lengthy but
standard calculations yield in the limit ξ → 1 (associated to
the large time limit)

F̂�ðe−1; ξÞ ¼ 1 −
1

a0GðξÞ
þOð1 − ξÞ; ð7Þ

X
Y≠0

F̂�ðY; ξÞ ¼ 1

ð1 − ξÞGðξÞ þOð1Þ; ð8Þ

where GðξÞ is the leading order term of P̂ð0j0; ξÞ when
ξ → 1 and P̂ðrjr0; ξÞ is the discrete Laplace transform of
the propagator of a usual nearest-neighbor symmetric
random walk and

a0 ≡ 2d − α

2dþ ð2d − 1Þα ; ð9Þ

α≡ lim
ξ→1−

½P̂ð0j0; ξÞ − P̂ð2e1j0; ξÞ�: ð10Þ

Explicit expressions of GðξÞ and α for 2D and quasi-1D
systems are provided in Table I, where we defined

Sð2ÞL;n ¼
1

L

XL−1
k¼1

sinnðπk=LÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin2ðπk=LÞ

p ; ð11Þ

Sð3ÞL;n¼
1

L2

XL−1
k2;k3¼0

ðk2;k3Þ≠ ð0;0Þ

½cosð2πk2=LÞþcosð2πk3=LÞ�n

×

��
1þ1

3
½cosð2πk2=LÞþcosð2πk3=LÞ�

�
2

−
1

9

�
−1=2

:

ð12Þ

Finally, we have that hXiðξÞ ∼ ρ0a0=ð1 − ξÞ2, and,
hence, using a Tauberian theorem, we get

lim
ρ0→0

hXti
ρ0

∼
t→∞

a0t: ð13Þ

This calculation can be extended to the case of arbitrary
jump probabilities pν of the TP and Eq. (13) is found to
hold in this general case with

a0 ≡ p1 − p−1

1þ 2dα
2d−α ðp1 þ p−1Þ

: ð14Þ

This explicit expression provides a value of the velocity
which is in good quantitative agreement with the high

TABLE I. Explicit expressions of GðξÞ and α for 2D and
quasi-1D systems.

Lattice GðξÞ α

2D infinite ð1=πÞ ln½1=ð1 − ξÞ� 4 − ð8=πÞ
2D stripe 1=ðL ffiffiffiffiffiffiffiffiffiffi

1 − ξ
p Þ 8 − 8Sð2ÞL;1 − 8Sð2ÞL;3

3D capillary
ffiffiffi
6

p
=ð2L2

ffiffiffiffiffiffiffiffiffiffi
1 − ξ

p Þ 18 − 16Sð3ÞL;0 þ 12Sð3ÞL;1 − 2Sð3ÞL;2
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velocity obtained numerically at short times (see Fig 2 for
p1 ¼ 1 and Fig 3 for p1 < 1).
In order to describe the ultimate regime corresponding to

the low velocity we now need to analyze the regime where
the large time limit is taken first and the small density limit
next [in contrast to the regime considered in Eq. (13)]. The
formalism described above can actually be extended to
analyze this second limit. The key difference with the
previous case is that for a fixed small ρ0 the random walk
performed by the vacancy between two successive visits of
the lattice site occupied by the TP is a biased random walk
in the reference frame of the TP, due to the interactions of
the TP with the other vacancies. The method presented
above can then be applied, provided that the symmetric
propagators P̂ are replaced by biased propagators cPϵ (that
can be explicitly evaluated). In the dense limit ρ0 → 0, the
bias ϵ is proportional to the vacancy density ρ0 so that its
explicit determination is not needed to determine the
velocity to leading order. It is finally found that

lim
t→∞

hXti
t

∼
ρ0→0

ρ0a00;

1

a00
≡ 1

a0
þ 4d2

ð2d − αÞ
1

Ld−1 ; ð15Þ

where α is still defined by Eq. (10) with unbiased
propagators. Several comments are in order. (i) In quasi-
1D systems, the transverse width L is finite, so that the
ultimate velocity ρ0a00 is always lower than the first high
velocity ρ0a0. The theoretical expressions Eqs. (13), (15)

quantitatively account for the velocity anomaly numerically
evidenced in Fig. 2 [see also Figs. 3(a), 3(b), and 3(c)]; note
that the theoretical low value is reached only in the limit
ρ0 → 0, which explains the observed discrepancy between
the theoretical and numerical values that decreases when
ρ0 → 0. (ii) The velocity jump ρ0ða0 − a00Þ can be shown to
scale as F2 for small applied force F, so that this anomaly
emerges beyond the linear response. In turn, to linear order
in F, there is a single velocity which can be shown to fulfill
the Einstein relation; (iii) this velocity jump can be checked
to be a decreasing function of L, in systems unbounded in
the transverse direction, i.e., such that L → ∞, a00 ¼ a0
which means that no velocity anomaly occurs. In particular,
in infinite 2D systems, superdiffusion takes place but no
velocity anomaly is observed, as numerically confirmed in
Fig. 3(d) (note that this single value of the velocity had
already been obtained in [30]); (iv) mathematically, the
criteria for superdiffusion to occur is that the limits ϵ → 0
and ξ → 1 of cPϵð0j0; ξÞ do not commute [24], which is the
case in 2D and quasi-1D systems. The condition for
velocity anomaly is in contrast to the fact that the limits
ϵ → 0 and ξ → 1 of cPϵð0j0; ξÞ −cPϵð2e1j0; ξÞ do not
commute, which is in fact more constraining, and is
satisfied in quasi-1D systems but not in 2D systems.
Parenthetically, we note that this noncommutation of the
limits for cPϵð0j0; ξÞ −cPϵð2e1j0; ξÞ is a general property
which holds for any biased random walk in quasi-1D
systems, and could potentially have implications in other
contexts.
Therefore, in quasi-1D systems, two different regimes of

the velocity have been identified. In fact, the complete
dynamics of the mean position of the TP can be obtained in
the scaling regime t → ∞ and ρ0 → 0 with ρ20t fixed. We
find that in this limit

hXti
ρ0t

∼ gða020ρ20tÞ; ð16Þ

with

gðτÞ ¼ a0

�
b

b2 − 1

�
erfð ffiffiffi

τ
p Þ þ e−τffiffiffiffiffi

πτ
p

�

þ 1

τ

�
b

b2 − 1

�
2h
eðb2−1Þτ½1 − erfcðb ffiffiffi

τ
p Þ� − 1

i

þ b
2

b2 þ 1

ðb2 − 1Þ2
erfð ffiffiffi

τ
p Þ
τ

−
1

b2 − 1

�
; ð17Þ

where b≡ a0=a00 − 1. Note that this scaling function
reproduces both regimes (13) and (15) by taking the
appropriate limits. Figures 3(a), 3(b), and 3(c) show a
very good agreement for all time scales with numerical
simulations for 2D stripes and 3D capillaries.
In conclusion, on the basis of a simple model of a driven

diffusive tracer in a crowded environment, our analysis has

(a) (b)

(c) (d)

FIG. 3 (color online). Rescaled mean position of the TP as a
function of rescaled time, for different geometries and forces.
(a) 2D stripe with L ¼ 3 and infinite external force. (b) 2D stripe
with L ¼ 3 and F ¼ 4, βσ ¼ 1. (c) 3D capillary with L ¼ 3 and
infinite external force. For (a),(b), and (c), the solid line is the
scaling function g defined in the main text. (d) 2D infinite lattice
with infinite drag force. The solid line is the single value a0 ¼ a00.
The number of realizations in numerical simulations ranges from
102 (for high ρ0) to 105 (for low ρ0).
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revealed the emergence of a striking velocity anomaly in
confined geometries. Namely, we have shown that in quasi-
1D systems such as stripes or capillaries, which are used
nowadays in nanofluidics [31], the TP velocity, which is a
prominent observable of microrheology, displays a long-
lived plateau before ultimately dropping to a lower value.
We have developed an analytical solution that quantita-
tively accounts for this intriguing behavior. Physically, the
high value of the velocity originates from repeated inter-
actions of the TP with a single vacancy that performs a
recurrent random walk in low dimensions. After a time
scale t× ≃ 1=ρ20, other vacancies start interacting with the
TP, and lead ultimately to the emergence of the low
velocity. A subtle point, quantified by the expressions
(13) and (15) is that this velocity jump is actually strictly
equal to zero in infinite 2D systems. In particular, velocity
anomaly occurs only in quasi-1D systems in contrast to
superdiffusive growth of the variance of the TP position
which is observed in both quasi-1D and 2D systems.
Finally, our analysis suggests that velocity anomaly could
be a generic feature of driven dynamics in quasi-1D
crowded systems.
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