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Computing analytically the n-point density correlations in systems of interacting particles is a long-standing
problem of statistical physics with a broad range of applications, from the interpretation of scattering experiments
in simple liquids, to the understanding of their collective dynamics. For Brownian particles, i.e., with overdamped
Langevin dynamics, the microscopic density obeys a stochastic evolution equation, known as the Dean-Kawasaki
equation. In spite of the importance of this equation, its complexity makes it very difficult to analyze the statistics
of the microscopic density beyond simple Gaussian approximations. In this work, resorting to a path-integral
description of the stochastic dynamics and relying on a saddle-point analysis in the limit of high density and
weak interactions between the particles, we go beyond the usual linearization of the Dean-Kawasaki equation,
and we compute exactly the three- and four-point density correlation functions. This result opens the way to
using the Dean-Kawasaki equation beyond the simple Gaussian treatments, and it could find applications to
understand many fluctuation-related effects in soft and active matter systems.

DOI: 10.1103/5mjd-m46h

I. INTRODUCTION

Characterizing n-point density correlations in systems of
interacting particles is a central problem of statistical physics.
For instance, measuring two-point density correlations of
liquids is generally the simplest insight into their structure
and dynamics. Such observables have motivated a significant
amount of theoretical work and the development of numerical
methods, rooted in classical, equilibrium statistical mechan-
ics [1-3]. In addition, they found their applications in the
interpretation of neutron, x-ray, or light scattering experi-
ments, which have become central tools to analyze liquids,
and more generally soft matter [4—7]. More complex observ-
ables have also attracted attention: three-point (or “triplet”)
correlations have been studied in order to improve the descrip-
tion of liquids beyond simple two-body approaches, and to get
better insight into their structure and dynamics [8—14].

From an analytical perspective, the explicit calculation of
n-point density correlations is a notoriously difficult prob-
lem, and it typically requires approximations. For instance, to
compute static two-point functions, the well-known Percus-
Yevick, hypernetted chain, or mean spherical closures have
been successful [3,15]. Their dynamical counterpart can
be estimated using schemes such as mode-coupling theory
(MCT) [16], which remain valid (up to a certain extent) even
for very slow dynamics, and in which high-order density
correlations were characterized [17]. However, in spite of
their predictive power, such theories almost always rely on
numerical evaluations, and fully analytical results are scarce,
independently of the underlying dynamics of the system
(Newtonian or Langevin).
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We will consider the ubiquitous model of Brownian
particles which interact via pair potentials—this level of de-
scription is particularly relevant to describe colloidal particles,
macromolecular or polymeric fluids, and ions. The positions
of the particles, ri(¢), ..., ry(t), obey overdamped Langevin
equations, while the empirical or microscopic density, defined
as p(x,t)= vazl 8(x —ri(t)), obeys the Dean-Kawasaki
(DK) equation [18,19]. The latter is particularly difficult to
analyze and has only been studied in specific regimes. First,
in the absence of interactions, the statistics of p can be fully
characterized as Poissonian (either from direct calculation or
from a field-theoretical formulation), as one would expect
from simple physical considerations [20]. Second, a one-loop
renormalized treatment of the DK equation highlighted its
connections with standard MCT theory [21]—this approach is
nonetheless not fully consistent, as it is an expansion around a
Gaussian theory, and not around the case of noninteracting
particles. Finally, another commonly used strategy consists
in expanding the DK equation in the limit of high density
and weak interactions [22-24]. At leading order, the resulting
“linearized” equation, which has been extensively used to
study a variety of fluctuation-related phenomena in soft and
active matter [25-30], is by nature limited to describing the
Gaussian fluctuations of the stochastic field p. The charac-
terization of non-Gaussian fluctuations beyond these limiting
regimes has been addressed numerically [31], but remains an
open problem from an analytical perspective.

Given the broad range of domains where the DK equa-
tion has been studied, from purely theoretical or computa-
tional considerations to applications in the physics of soft
and active matter for the interpretation of fluctuation-induced
phenomena [32], this appears as a prominent line of re-
search, where explicit analytical solutions are still scarce. In
this article, resorting to a path-integral formulation and to a
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perturbative expansion similar to that employed in macro-
scopic fluctuation theory, we go beyond previous treatments
of the DK equation and we compute the three- and four-point
correlation functions of the microscopic density of interacting
Brownian particles. We obtain a simple and fully explicit ana-
Iytical expression that is confronted to numerical simulations.
This constitutes the first analytical characterization of non-
Gaussian fluctuations in the DK equation with interactions.

II. THE DEAN-KAWASAKI EQUATION

Consider a d-dimensional suspension of N particles inter-
acting via some pair potential V (r), and obeying overdamped
dynamics. We denote by u their bare mobility, and D their
bare diffusion coefficient, which are related through the
fluctuation-dissipation relation D = ukgT, where kg is Boltz-
mann’s constant and 7 is the temperature. Let us start from
the set of Langevin equations

dr, al
== —M;VV(I‘“ —rp) +V2Dg, (1), (1)

where ¢,(¢) are Gaussian white noises, of average zero
and variances (Zy,;(t)¢p,j(t")) = 8apdijé(t —t'). The evolu-
tion equation of the density of particles, defined as p(x,?) =
22;1 8(x — ry (1)), reads

%p(x, 1) =V - [§(x, 1)y/2Dp(x, 1)] + DV p(x, 1)

+uVv - [p(x,t)fdy p(v,t)VV(x—y)} 2)

where &(x,¢) is a Gaussian white noise of average zero and
variance (&;(x, 1)&;(x', ")) = 8;;6(x — x')8(¢ —t’). This exact
evolution equation, usually called the Dean-Kawasaki equa-
tion, was derived from phenomenological considerations by
the latter [18], and later obtained using stochastic calculus by
the former [19]. This equation has progressively become an
important object of study, as it encompasses under a compact
form the N-body dynamics described by the coupled over-
damped Langevin equations given in Eq. (1). Its complexity
lies in its nonlinearity and in the multiplicative noise term,
which makes its direct resolution impossible as such.

A simple and straightforward treatment of the DK equa-
tion consists in linearizing the stochastic density p around a
constant uniform state py = N/V (where V = L is the vol-
ume of the system), i.e., writing p(x,1) = po + /PoP(x, 1),
and considering the joint limit limit ¢ < /oo and V —
0 with constant pgV (i.e., the limit of weak interactions
and high density, which can be understood as a mean-
field-like treatment) [22-24]. At leading order, this typically
leads to a linear equation obeyed by the perturbation ¢
(Appendix A), which can be solved in Fourier space [33] to
yield ¢(k, w) = ~/2Dfi(k, w)/[iw + Q2(k)], where Q(k) is ho-
mogeneous to an inverse time and is defined as Q(k) = Dk? +
wpok?V (k), and where 7 is a Gaussian white noise of zero av-
erage and variance (7i(k, )ii(k', t")) = Qm)k*s(k + k)8t —
t"). Therefore, the perturbation ¢ is clearly a Gaussian field,
and this approximation does not allow the characterization
of the non-Gaussian behavior of the field p. More precisely,
within this linearization, the n-point connected correlation

functions of p, i.e., the cumulants of the density, trivially
vanish for n > 3.

III. PATH-INTEGRAL FORMULATION

To go beyond the Gaussian approximation, we follow
the path-integral formulation of the stochastic dynamics
that was initially proposed by Martin-Siggia-Rose [34]
and Janssen [35]. Its present application is similar to the
path-integral treatment of the equation of fluctuating hy-
drodynamics in other contexts [36—40]. The Dean-Kawasaki
equation [Eq. (2)] can be rewritten under the form 9,p =
—V - J, with the stochastic current J = —DVp — \/2Dpé —
np(p * VV), where we define the convolution operator (f *
g9)(x) = [dyf(y)g(x —y). Since £ is a unit Gaussian white
noise, its probability distribution functional reads p[&]
exp[—% fOT dt’ [ dx’&(x’, t')*], up to a normalization constant,
where T is the typical observation time of the trajectory. The
probability to observe a given trajectory p knowing the initial
configuration p(x, 0) then reads

Plplpx. 0)] ~ / DE 8(3yp + V - Jyel =2 lo 'S e )
3)

up to a normalization prefactor. Note that the DK equa-
tion (2) is a stochastic differential equation with multiplicative
noise, which is interpreted here in the Itd6 way [41,42]. A
consequence is that the Jacobian of the transformation to a
path-integral is constant, and is absorbed in the normaliza-
tion [43,44].

Next, we use the Fourier representation of the
§-distribution, which reads, for any functional v [p]:
(o= [ Dp exp{— [y dr [ dxp(x.0)¥[p(x.0)]}, where
p is an auxiliary field. With this representation, it is
now possible to rewrite the integral as P[p|p(x, 0)] ~
[ DpDEexp(— [ dt dxlp@p + V - J) + £1).
the definition of J, one gets

Plplp(x, 0)]

~ fpi) e*foT dtdx f’(arP*DVZP*MV[ﬂ(P*Vv)])G[p’ Pl 4

Recalling

Glo.pl = [DE e hasis/mivia e,

Glp, p]l = el drdx Dp(VP Finally, performing integration
by parts with respect to x yields P[p|p(x,0)] ~
[ Dp exp{— [, dt [ dx S[p, p1} with the action

Slp, pl = pd.p — Dp(Vp)* + D(Vp) - (Vp)
+up(Vp) - (p*xVV). )

Incorporating the weight of the initial condition yields P[p] ~
fDﬁ; exp{—S|p, p]}, with the generalized action S[p, p] =
—In{Polp(x,t = O)]} + f dt [ dx S[p, p, where Py is the
initial distribution of the density.

where

IV. n-POINT CORRELATION FUNCTIONS

We now aim to calculate the n-point density correla-
tion functions defined in real space as C,(Xy,...,X,) =
(ITi=; p(Xx))c, where the index “c” indicates a connected
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correlation function, and where we introduce the shorthand
notation X = (x,7). They can be computed through the
successive functional derivatives of the cumulant-generating
functional u[A] = In{exp|[ f dX A(X)p(X)]) (where the angu-
lar brackets denote average with respect to the distribution P),
with respect to A(X ), ..., A(X,), and where we ultimately
set A = 0. Equivalently, for n > 2, the connected correlation
functions can be computed as

8" Hp(X 1))
SAX2) - 8A(X ) |z

where the average (-), is taken with respect to the tilted
action S[p, p] = — [dX A(X)p(X) + S[p, p], ie., ()r=
/Do [ Dp - exp(=Silp.p)
/Do [Dp exp(=S:[p.p])

It is generally not possible to obtain explicit expressions

when computing averages with respect to the action S, as the
integrals cannot be performed easily. However, one can make
progress in the joint limit of high density (p9 — o0) and weak
interactions (V — 0), with the product of pyV being of order
1—this is the limit that was discussed in Sec. II and that leads
to the “linearized” Dean-Kawasaki equation. In this limit, the
tilted action can be rewritten as S, [p, p] = poSi[p, 1, where
p is such that p = pyp, and where S;[p, p] is of order 1
and independent of py. Applying a saddle-point method, it
becomes clear that the average with the tilted action S is
dominated by the most probable path, i.e., the path (p, p)
which minimizes the action. This approach is reminiscent of
the strategy that is at the heart of macroscopic fluctuation
theory (MFT) [45—47], where saddle point approximations are
typically justified by hydrodynamic limits (i.e., long times and
large distances).

We denote the path that minimizes the action by (g, p),
and we study small variations around it, i.e., we set p(X) =
g X)+6p(X) and p(X) = p(X) + 8p(X). Defining §S) =
S (p, p) — Si(q, p) and performing variational calculus, we
find that the path of least action, for which §S;, cancels, obeys
the following equations (Appendix B):

d%q = DV*q—2DV - (qVp) + uV -[g(g* VV)1, (7)

Cn(Xl’--an):

(6)

dp=—D(Vp)> —DV’p+ u(Vp)-(qg*VV)
—lgVp) = VV — 2, ®)

where the Lagrange multiplier A acts as a source in the equa-
tion for p. These “bulk” equations are completed by initial and
final conditions on the values of the fields g and p, which are
given in Appendix B. Although Eqs. (7) and (8) resemble the
MFT equations that were studied for one-dimensional diffu-
sive systems [36—40,48-52], they are valid here in d spatial
dimensions, and the pair interactions are encoded explicitly
in pair potential V, rather than in the macroscopic transport
coefficients (diffusivity and conductivity) that appear in MFT.

To summarize, the connected density correlation func-
tions are computed using Eq. (6), i.e., through the successive
functional derivatives of (o(X)),, which is approximated as
¢(X 1) under the saddle-point approximation. The function g
is obtained as the solution of the set of Egs. (7) and (8).
Importantly, since the determination of C, through Eq. (6)
involves taking (n — 1) functional derivatives with respect to
A and then taking A = 0, one only needs to solve for g at

order A"~!. To this end, we will introduce the following series
expansion: f(X) = Zzio f2(X) (for f = por qg), where f, is
of order n in A, and we solve Eqs. (7) and (8) order by order.

Before solving Eqgs. (7) and (8), one needs to specify ad-
ditional hypotheses and conditions: (i) First, at order O in
A, the solution of Egs. (7) and (8) must follow the aver-
age evolution of the system. This implies po(x,?) =0 for
all x, ¢, and we choose to expand the dynamics around the
profile go(x, t) = po in order to be consistent with the usual
expansion of the Dean-Kawasaki equation around a constant,
uniform state, as discussed in Sec. II. (ii) Second, we choose
to solve these equations in the limit where the system is
equilibrated, i.e., when the initial conditions can be sent to
the infinite past [20]. More rigorously, when computing the
nth correlation functions, it means that we take the limit
t,...,t, — oo, with finite differences between any two times
t; — tj. In practice, we use Fourier transformations for both
space and time to solve Egs. (7) and (8). We emphasize that,
in principle, Egs. (7) and (8) must be solved for a given initial
condition. One can either consider quenched initial condi-
tions [i.e., with a fixed, deterministic initial density profile
pq, implying Po[p] = 8(p — pg)l, or annealed (i.e., with a
density profile drawn from its equilibrium distribution, im-
plying Py[p] = e #71°l, where F is the free energy of the
system) [36,37,48,53]. The consequences of these choices on
the initial and final values of the fields ¢ and p are recalled in
Eq. (B4). (iii) Finally, we emphasize that this approach will
yield exact results in the limit where py is very large and
where the typical interaction potential V' is very small, with
the product poV being finite.

As a side remark, we show in Appendix C that, starting
from Eqgs. (7) and (8), taking V = 0, and using a Cole-Hopf
transformation [37], one retrieves the exact results for the
n-point correlation functions of the noninteracting Brownian
gas [20].

V. EXPLICIT RESULTS

It will be convenient to compute the connected correlation
functions in Fourier space through the relation:

ColKy, ..., Ky) = <H b(Ki>>
i=1 c

n—1~
= (2m)=D@+D 8" g(K1)

S1(—K2) - - - SA(—K,)

iz0
9

where we use the shorthand notation K = (k, w). It will also
be convenient to introduce the quantity v, which is such that

CuKy, ... Ky) = poQr) (K, ... K8 (ZK,).
0

A. Two-point correlations

Expanding both p and ¢ in powers of A, and at order 1 in the
perturbation, it is straightforward to show that Egs. (7) and (8)
yield §i(K) = 2Dpk*G(K)p1(K) and p1(K) = GK)*A(K),
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where we introduce the Green’s function G(K) = [iw +
Q)] = [iw + Dk* + upok*V (k)]~'. Using Eq. (9), one
obtains

B 2Dpok? (27 )?+!

(p(K1)p(K3))e = Q7 + o S(ky + k)8 (w1 + w»).
(1D

One can check that these are the same correlations as the
ones that may be computed within the linearization of the
Dean-Kawasaki equation around the homogeneous density
po, as described above. Inverting the Fourier transforms
with respect to time, Eq. (11) yields the following expres-
sion for the intermediate scattering function, defined for a
finite-size system [54] as F,(k,t) = Il\,([)(k,t),b(—k, 0)) =

Dk* e~ DR [1+0(0)]
Qk)

tential ¥(k) = poV (k)/kgT. As a consequence, the two-point
structure factor that is obtained within this perturbative expan-
sion is S(k) = Fr(k,t = 0) = [1 + v(k)]~!, which coincides
with the structure factor that is typically computed within the
random phase approximation [3,23,55,56].

, where we introduce the dimensionless po-

B. Three-point correlations

We now go one step further and compute the deviation
from the Gaussian behavior, which is encoded in higher-order
correlation functions. To compute three-point correlation
functions, we need to solve Egs. (7) and (8) at order 2 in A,
which read

dq2 = DV:qy + upoV - (VV % q2) — 2DpoV2ps + s,
O py = —=DV’py — pouVV % Vpy + P,. (12)
The source terms O, and P, are explicit in terms of g; and

p1, which both have been calculated when we studied the
equations at order 1 in A:

Q2 = =2DV - (q1Vp1) + uV - [qi(VV * q1)],
Py = —D(Vp1)’ + u(Vp1) - (VV % q1) — w(q: Vpi % VV).
(13)
In Fourier space, the function ¢,, which is needed to com-
pute three-point correlation functions through Eq. (9), is
formally obtained as G»(K) = —2Dpok*|G(K)|*Pr(k, w) +
G(K)Q,(k, ). Using Eq. (9) for n = 3, and computing the
functional derivatives of g, with respect to A, we get an
explicit expression for the three-point correlation function
in Fourier space: C3(K, K,, K3) = po(2m ) *18(K| + K, +
K3)¥3(K1, K>, K3), with

V3K, K>, K3) = '3 (K1, KoY (K3) + T3 (K, K3)y(K3)
+ I'3(K>, K3)¥»(Ky), (14)

where 1,(K) is a shorthand for v,(—K, K), which is de-

fined from the two-point correlation functions [Eq. (11)] as
Yo (K, K') = —2D(k - K')YG(K)G(K"), and I'3(K, K') reads
T3(K,K') = (K, K') + ju k - K'[GK)V (K" )2 (K')

+K < K']. 5)

The Fourier transforms with respect to the frequencies wy,

w;, and w3 can all be inverted explicitly, yielding an explicit
but lengthy expression for (p(ky,t;)p(k2, 2)p(ks, t3)). for

t) <t <t3 (Appendix D). To get a simpler expression and
to limit the number of variables, we consider the particular
situation where t; = 0 and, =13 =t > 0. We get

(Z)(klv O)Ib(k% I)Z)(k3, t))C

= Ss(kl,k27k3){eg(k')t + [1 4+ 0(k)]

ki - ThaD(ka) + ks D(ks)](e 2020 =00 }
X 5

[Q(k1) — Q2(k2) — Q(k3)]
(16)

where we defined the static three-point structure factor as

Q) pod (ks + ko + k3)

S3(ky, ko, k3) = .
sk K3) = B e + oG I + ()]

a7)

Equation (16), which is exact, is the central result of
this paper, and several comments follow: (i) In the ab-
sence of interactions (V = 0), one retrieves the expression
of the normalized correlation function that can be derived
straightforwardly when the positions of the particles r;(t)
are independent Wiener processes [20], and which reads, for
a finite-size system, F3(k,k',1) = ~(p(k, )p(K', 1)p(—k —
K, 0)) = e PEK’1 (i) Tt is clear that the third-cumulant
of the density is different from the second one, meaning
that the distribution of p is generally non-Poissonian (apart
from the special case of noninteracting particles [20]). (iii)
The typical relaxation time of the dynamics, which reads
t(k) = Q(k)~" = {DK*[1 + poV (k)/kgT1}~" in this limit,
controls the relaxation of the three-point correlations. As one
could expect, it decreases for increasing density and interac-
tions. (iv) The expression obtained for the static three-point
structure factor [Eq. (17)] coincides with the expression that
is usually obtained within the “convolution” or Kirkwood
approximation [57,58]. It consists in writing Sz(ky, k>, k3) =~
S(k1)S(ky)S (k3), where S(k) is the two-point structure fac-
tor that can be proven by writing the three-point extension
of the Ornstein-Zernike approximation, and by setting the
three-point direct correlation to zero [3,12]. (v) It can be
proven from the analytical expression given in Eq. (16) that
Fi(ky, ky,t) is nonmonotonous and always has a negative
minimum. This is observed in the plots shown in Fig. 1,
where the analytical expression is confronted by results from
numerical simulations (see Appendix F—note that, when con-
fronted with numerics, the theory is only expected to be exact
asymptotically for high density and weak interactions). This
means that, at long enough times, the density distribution is
negatively skewed. This is in contrast with the case of non-
interacting particles, where the density is always positively
skewed. Finally, and as expected, we observe that the agree-
ment improves as we approach the joint limit pg — +o0c and
V — 0 while keeping the product pyV fixed.

C. Four-point correlations

We finally go one order further and derive the expression
of four-point connected correlation functions. This requires
the resolution of the equations of motion (7) and (8) at
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Ss(k1 =5, ko, —k1 — ko) 095 Fi(k1, ko, t)
0.34 ~* p=1€e=1 ,o‘"". ° (K1, ko)
v =2, 2= 0.5 s, 0.20 N3 ©(8,10)
0.321 ]
(5, 6)
Ollr,
0.301 7 (3, 4)
0.281 0.101
0.261 0.051
0.241 0.001 eeGemeesEE00608006608
0.221 ~0.054
0 5 10 15 20 1072 1071 10° 101
k, ¢

FIG. 1. Results from numerical simulations (symbols) performed in d = 1, with N = 100 particles interacting via harmonic repulsion:
V(x)=¢e(l —x/0)*O(c —x) (6 =1, e = 0.5), compared with the analytical results (solid lines), Eqs. (16) and (17) for the left and right
panel, respectively. See Appendix F for details on numerical simulations. Left: Three-point static structure factor Ss(ky, ko, —k; — k) for
ki = 5 and as a function of k,. Right: Three-point correlation function F3(ky, ky, t) = ﬁ(,b(kl, 1)p(ky, t)p(—k; — ky, 0)) as a function of time,

for (k1, ky) = (5, 6), and for different values of the overall density py. Wave vectors are expressed in units of 27 /L.

order 3 in A, which read
dqs = DV?q3 + ooV - [(g3 * VV)] — 2DpgV?p3 + 03,
& p3 = —DV?p3 — upo(Vp3 % VV) + P5. (18)

Here, the source terms P; and Q3 depend on the previously
determined fields pi, p2, q1, and g»:

In Fourier space, the set of equations (18) can be solved for
both p3 and g;:

Gs(k) = —2Dpok? |G (k)|*Ps (k) + G(k) Q5 (k),
pak) = —Gk)* P (k).

It should be emphasized that this procedure closely parallels
the one used to compute the three-point correlation functions.
The structure of Eq. (18), which contains linear terms in p3

21

= —-2DV - (q\V \%
O (@1Vp2+42Vp1) and g3 and source terms dependent on lower-order p; and g;,
+1V - lgi(q2 * VV) + qa(q1 * VV)I, 19 s general and expected to hold at arbitrary order. In practice,
Py = —2DVp,-Vps+ uVp; - (g2« VV) the main difficulty lies in the rapidly increasing complexity of
the source terms P; and O3, which quickly become intractable.
T uVp2-(qrxVV) = ulgrVpa + Vpi]+ VV. From Eq. (21), one can compute the functional derivatives
(20) of ¢z with respect to A to obtain an explicit expression for
Si(ky =5,ky = 6, k3, —k1 — ky — k3) Fu(ky, ko, k3, t)
444444 e pp=1, =
V2 e =2, 6= 05 0.001 S8 —
0.01{ — ™ Po= 3, e=0.33
po — 00,6 =0
0.00 —0.021
—0.01
W —0.044 (k1, ko, ks3)
—0.02 s o .
(:\‘/r,,* (aj, 10, 11)
—0.03 —0.061 (5,6,7)
v«c"---'. 0000 ° (3, 4«, 5)
0 5 10 15 20 1072 107! 10° 10!
ks t
FIG. 2. Results from numerical simulations (symbols) performed in d = 1, compared with the analytical results (see the caption of Fig. 1

and Appendix F for details on numerical simulations). Left: Four-point static structure factor Sy for k; = 5, k, = 6, and as a function of k3.
Right: Four-point correlation function F; as defined in Eq. (22) as a function of time, for (k;, k;) = (5, 6), and for different values of the

overall density pg.
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the fourth cumulant Cy, i.e., applying Eq. (9) for n = 4. Its
expression is lengthy but given in a rather compact form in
Appendix E. A Python notebook is made available: it contains
the explicit formula for an arbitrary potential V, together with
its Fourier inversion with respect to the frequencies w; [59].
Finally, this expression has been validated by computing
numerically the four-point scattering function 4, defined as

Falky, ko, ks, t)

1
= N(f)(kls Dpky, )pks, 0)p(—ky — ko —k3,0)) (22)

and the static  structure factor  Su(ky, ko, k3) =
Fu(ky, ky, k3, t = 0), in the one-dimensional setting already
considered in the previous section. The theoretical and
numerical agreement is presented in Fig. 2. Again, like in
the results shown in Fig. 1, we observe that the agreement
improves as we approach the joint limit pg — oo and ¢ — 0
with a fixed product. The four-point correlations exhibit
a nontrivial nonmonotonic time dependence and may be
negative, in contrast with the noninteracting case where it is a
positive monotonically decreasing function of time.

VI. CONCLUSION AND OUTLOOK

In this work, we provided an analytical description of
non-Gaussian density fluctuations in the DK equation. Us-
ing a path-integral formulation and macroscopic fluctuation
theory, we computed three-point density correlation func-
tions for interacting Brownian particles in the regime of high
density and weak interactions. These results, and more gen-
erally this methodology, establish the potential of the DK
framework to capture higher-order fluctuation phenomena in
soft and active matter systems. Looking forward, we aim to
compute the full large deviation function of the density, i.e.,
for arbitrary functional X, in the fashion of the full solu-
tion of the MFT equations that were obtained in the context
of one-dimensional lattice gases [38,50]. Finally, extensions
to multiple coupled stochastic fields will be crucial to take
further the description of electrolytes within the DK frame-
work [27,60-63], and more specifically their non-Gaussian
fluctuations [64,65].
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APPENDIX A: REMINDER: LINEARIZATION
OF THE DEAN-KAWASAKI EQUATION

In this Appendix, we recall the results that are obtained
when the Dean-Kawasaki equation [Eq. (2) in the main text] is
linearized around a homogeneous state. The Dean-Kawasaki
equation is nonlinear in the density p. It can be linearized
in the limit of small fluctuations around a constant uniform
value pg [22-24]: p(x,t) = po + /po¢(x,t). Equation (2)
then becomes, after having divided both sides by /o,

dp(x,1) = DV2p(x, 1) + npo VIl * VV)(x,1)]

+ LBV - (6 VV)] + VDV - £(x, 1)
+ ZLMV L& D x, 1),

with the convolution operator (V x¢)(x,t) = f dyV(ix —
Y)¢(y,t). Inthe limit ¢ < ,/pp and V — 0 with ooV = O(1),
two terms may be neglected: the term proportional to ¢?, and
the multiplicative noise term. This yields

dp(x,1) = DV3(x, 1) + pou V[V * ¢)(x, 1)]
+ 2DV - E(x, 1).

(A)

(A2)

In Fourier space, the equation reads
ik, ) = —Dk> Pk, ) — npok®V (k)p(k, )
++/2Dij(k, w), (A3)

where the (scalar) noise # has zero average and the following
variance:

ik, )7k, ")) = Qo) K28k + K )S(w + o). (Ad)
Solving for ¢, one gets
_ V2D ~
Pk @) = G DI 1 vy A

This is the result given in the main text.
We then get the two-point, two-time correlation function:

(B, )Pk, o))
= 2D d+172 /
= T DR+ gV G T ROk KD

x 8(w + o).

(A6)

The Fourier transform with respect to time can be inverted to
yield (for ¢ > 0)

(@, 1)K, 0))

= Q2n)"8(k +K) e (PR ke V R (A7)

D+ ppoV (k)

At equal time, one simply gets

(@, 0)(K', 0)) = 27 ) 5k + k') (A8)

1+ poV (k) /ksT"
which coincides with the expression of the structure factor
that can be computed from the random phase approximations
(RPA) [3]. This is the result that is also obtained from the
saddle-point treatment of the path-integral formulation of the
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stochastic dynamics, at order 1 in A, and that is given in the APPENDIX B: PATH OF LEAST ACTION
main text.

Finally, given that ¢ is Gaussian, all the connected
correlation functions or order n > 3 are zero within this ap-
proximation.

In this Appendix, we give details on the derivation of the
equations obeyed by the fields p and g that minimize the
action S, i.e., Egs. (7) and (8) in the main text. We define
8p and §p, the fluctuations around the optimal path (g, p),

J

px, 1) =qx,1) +p(x,1), (BI)

p(x,1) = p(x,1)+3p(x,1), (B2)
with §p, §p < ¢, p. Defining §S;, = S, (p, p) — S, (g, p), we find, at leading order in 0 and 80,

81n Pylq]

W — p(x, O)} +/dx 8p(x, T)p(x, T)

3S; ~ /dep(x, 0)|:—
T
+ f dr / dx 8p(x, 1){—0,p — D(Vp)* = DV?p+ u(Vp) - (q VV) — n(gVp) x VV — 1}
0

T
+ / di / dx 8p (e, )ik — DV2q + 2DV - (V) — 1V - [a(q % VV)I). (B3)
0

By definition of (g, p), the variation S given in Eq. (B3) should vanish for all perturbations 5o and §p. The first term in
the first line of Eq. (B3) yields two possible conditions, depending on whether one chooses the “annealed” or the “quenched”
setting. In the “annealed” setting, 5o (x, 0) is not specified a priori, so the terms between brackets should vanish. On the other
hand, in the “quenched” setting, one has d0(x, 0) = 0. In particular, if we consider the initial configuration to be uniform, we
get g(x, 0) = pp. The second term in the first line of Eq. (B3) yields the other boundary condition: p(x, T) = 0. In summary, the
boundary conditions read

plx, 0) = — el q(x, 0) = po,
(annealed){p(x’ =0, qx (quenched) P T) = 0. (B4)

The last two lines in Eq. (B3) give the bulk equations:
dq =DV?q —2DV - (qVp) + uV - [q(q x VV)], (B5)

p=—D(Vp)* —=DV’p+ u(Vp)-(g* VV) — u(qgVp) * VV — A, (B6)

whose solution with the boundary conditions specified in Eq. (B4) gives the path of least action and the most probable realization
of the stochastic density obeying the Dean-Kawaski equation. These correspond to Egs. (7) and (8) in the main text.

APPENDIX C: NONINTERACTING PARTICLES

In this Appendix, we show that all connected correlation functions can be computed for noninteracting particles, thus
retrieving the result of [20]. The starting point is the equations of least action (7) and (8), with the potential V set to zero.
The equations of least action read

%q=DV?q—2DV -[gVpl, &p=—D(Vp) —DV’p—i.

This set of coupled PDEs can be decoupled using the Cole-Hopf transformation [37], (Q, P) = (ge™?, e”), such that Q (resp. P)
satisfies a diffusion (resp. antidiffusion) equation with a spatially and temporally dependent growth term A:

8,0 =DV?*Q+ 10, 9P =—DV*P—\P.

These equations can be solved order by order in A by going in k-space for Q,, and P,, which are of order n in A. Using the
boundary conditions Qy(x, ) = po, Po(x,t) = 1, which correspond to the solutions of the noiseless system, one finds that for
n>0,

Qn(k, l) = / ds e_Dkz(t_S) / ﬂqd}“‘(k —dq, S)anl(qs s)v (Cl)
0 (2m)
~ T DI dqq ~ ~
Pyl 1) = — / ds e [ =2k — 4, )P (g, 9), (C2)
: (2m)
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and Qy(k, 1) = 2m)¢ pyd k), f’0~(k, t) = (2)?8(k). These expressions for the fields Q and P allow one to compute the n-point
connected correlation function C, by adapting Eq. (9) from the main text:
8" Gk, 1)

Colky, ... kit ... 1) = )"~ — -
(ki R TS SO T

=0
n dd B 5

= 61 e 811—1 |:Z/ ﬁpl(kn —-dq, tn)Qn—i(qa tn)j| 5
i=1

where 8;(---) = 2m)?8(- - - )/8A(—k;, t;). Without loss of generality, choosing the time ordering 0 < #; < - - - < t, ensures that
all functional derivatives act only on 0, since P;(k, t,) [Eq. (C2)], viewed as a functional of X, is independent of Ak, 1) fort < t,.
This crucial simplification implies that only the (n — 1)th-order term Q,_, in the expansion is needed to compute the n-point
connected correlation function, greatly reducing the complexity of the calculation to

8n_] anl(knv tn)

Colky, ... kpitr, ... 1) = )"~ ! .
( 1 1 ) ( ) 8)“(_kn—lvtn—l)'"8)L(_k1,t1)

The situation is now the opposite of that for P. Indeed, for 0,_»(q, s) [see Eq. (C1)], the integrals involved span times from 0 to
t,—2, implying that functional derivatives with respect to X (—k;, t;) vanish for any #; > t,_,. Consequently, the only nonvanishing
contributions arise from the combination 8,_;[A(k, — q,5)18,—2 - 81[0n—1(q, 5)]. This structure leads to a recursive formula
for the connected n-point correlation functions of the perfect Brownian gas:

Coller, .. kyity, . ty) = e PROT0C, (L sy ARt ) (C3)
The two-point correlation function, which sets the initial condition for the recursive formula, reads
Colky, k311, 12) = po (2m)*8(ky + ko) exp [Dky - ko (1 — 1)),

Using this recursive formula, one can derive an explicit expression for the n-point connected correlation function:

(plhey, 1)+ plhn, 1,))e = (2)*8 (Zh’)ﬂo exp Dzki kit —1) . (C4)

i<j

Although our derivation was done in the limit oy — oo, the final result is valid at arbitrary density [20].

As a concluding remark regarding the noninteracting Brownian gas, we note that the recursion relation (C3) can be Fourier-
transformed back to real space. This yields the expression of the n-point connected correlation function for noninteracting
particles in real space, for0 <t < --- < t,,

n
Ca(x1, ..o xn) = P(xy, tl)HP(xm, lip1lxi, ;) = Plx(t1) = x1, ..., x(1,) = x,], (CS)

i=1
where P(x,,t,) = N/V = po, and P(x',t' | x,t) is the propagator of a single particle, interpreted as the probability density of
finding the particle at position x” at time ¢/, given that it was at position x at time ¢. The last equality holds for any Markovian
stochastic process. In the case of Brownian motion, and assuming ¢’ > t, the propagator takes the Gaussian form P(x', t'|x, 1) =

[4nD(t’ — 1)]74/? exp{— ‘fg(;’i);) }, and yields the real-space expression from Ref. [20].

APPENDIX D: DERIVATION OF THE THREE-POINT CORRELATION FUNCTIONS

In this Appendix, we give details on the derivation of Eq. (16) in the main text.

1. Expression in Fourier space

The starting point of this derivation is the expansion of Egs. (7) and (8) at order 2 in A. They read

g2 = DV2qr + upoV - (VV % @) — 2DpgV>pr —=2DV - (¢1V p1) + iV - [q1(VV x q1)], (D1)
=0
O p2 = —DV?py — poptVV % Vs =D(V p1)* + u(Vp1) - (VV % q1) — (g1 Vi x VV), (D2)
=P

where 0, and P, play the roles of sources. In Fourier space, the first equation yields the following expression of g;:

2D pok? ), (k, @
ol ) = =25k, )+ 222

i+ Qk) o+ Q) ©3)
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From Eq. (D2), one gets p,(k, ) = Pk, w)/liw — Qk)]. Finally, g, is given explicitly in terms of P, and 0;:

. _ 2Dpk® Os(k, )
Gk, w) = —mpz(ky w) + ot Q) (D4)

which are themselves explicit functions of the functions p; and g; determined explicitly at the previous step of the calculation.
The goal of the calculation is to compute the three-point correlation functions:

Cs(ky, ko, k3, 1, w2, 03) = (B(ky, w1)p(ka, w2)p(ks, w3))e, (DS)
_ (27T)2(d+1) _ 526](k1,~w1) (D6)

SM(—ka, —2)SA(—k3, —@3) |50
_ (271')2(‘1+1) (quz(klya)l) (D7)

SA(—k2, —w2)8A(—k3, —w3)’
Using Eq. (D4), one gets

(plky, w)pky, w2)p(ks, w3))c

2D pok? 82Ps(ky, 1 820, (k1
:(2n)2<d+1){_ ook - 2 ( 1~601) L. ~ O ( 1~601) } (D8)
Q(k1)? + 07 SAM(—ka, —2)8A(—k3, —w3) (o + Qk1) SA(—kz, —2)5A(—k3, —w3)
From the definitions of Q, and P, [in Egs. (D1) and (D2), respectively], one can compute their Fourier transforms as
P dk/dw/ / ~ / / ~ ’ / 4 N\ ~ / /
Or(k, w) = / W(k—k)~kq1(k,w)[2Dp1(k—k,w—w)—uV(k—k)ql(k—k,w—w)], (D9)
- "do’ , ,
Poll, ) = D [ Sk - (k= KOp ' 0~ K0 — )
dk'de’ , , ,
1 | Gayrk = KOp K ) (k= K31k — K 0 — o)
dic de — k- (k—EHgi (K, oV ()p1(k — K, D10
oyt = KOG K. )V dopi( w — ). (D10)
Recalling for completeness the expressions of p; and §;:
_ Ak, w)
pik, ) = m, D11)
2Dpk?i(k, )
g1k, w) = —————, D12
aik, o) = oo (D12)

one then computes the second functional derivatives of 0, and P,, which read

820s(ky, wy) 1 2D pok3
= = = ki (ki +ky)s(ky +ky + k3)8
83—k, —0)80(—k3, —w3) QT Qko)2 + w? (e +k2)dky + Kz + ka)d(@1 + @2 + @3)
2D - 2Dpo (k1 + k2)? :|
. —uVk +k +2 <3, (D13
|:Q(k1 +ky) — i(w; + @) wik 2)Q(k1 + k)2 + (0] + @2)? (D13)

and

82 Py(ky, wi) _
Si(—ky, —2)Sh(—ks3, —w3)  (2m)d+!

Dk - (ki +k2)
[Q(k2) + i ][Rk +k2) — (w1 + @2)]
2Dpo(ky + k)*
[Q(k2) + i ][Q(k1 + k2)* + (w1 + @2)?]
2D pok
[QUk +k2) — i) + 02)][Qk2)? + 03]

Skt + ko + k3)5(w1 + wr + 603){

+ ks - (ki + k2)V (k) + k2)

+ pky - (ky + ko)V (k) +2 < 3}. (D14)
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Finally, with Eq. (D8), one gets
(pky, w1)pka, w2)p ks, w3))c
= Q@)™ 8(k1 + ka2 + k3)S (w1 + @ + w3)
2D?po(k) +k k’k 2k2k
,00(1.+ 2) _ _kika — _2kk, )23
Qky +k2) —i(w1 + @) \[Qka) +in][Qk ) +of]  [Qk1) + i01][Qk2)? + w3 ]

(k1 + ko) (Kt + ko2 (ky + ko) kikz N K3k,
Q1 + k) + (w1 + )2 [Qk2) + i ][Q(K1)2 4+ 0}]  [Q2(k)) +iw][Q(K2)? + &3]

1%
—u(2Dpo)* ) +2o3

V(kDkikik - (ki + k»)
—n(2Dpy)? 2] +23 D15
H2bpo) [Q0k) + ko) — i1 + o[ + @ |[Q22 + 2] } .
= po2r) 18k +ky + k3)8(w1 + w2 + 033 (k1 Ko, ks, w1, w2, @3). (D16)

The last equality defines 3. This is the most general expression for the connected three-point correlation function. To simplify
this expression, we introduce the shorthand notation K; = (k;, w;) and

G(K)) = ) o (D17)
One gets the following expression for r3:
V3K, K>, K3) = T3(Ky, K2)ya(K3) + U3(Ky, K3)y2(K>) + T3(Ko, K3)$2(K)), (D18)
where 1/, (K) is a shorthand for ¥, (—K, K), and I';(K, K) reads
[3(K,K') = —2Dk -k GK)GK') + k- K'[GEK)V (K)o (K') + K < K'] (D19)
= 9o(K, K') + p k- K[GEK)WV (K)o (K') + K < K']. (D20)

As written, (D18), the expression of the three-point correlation function is explicitly symmetric under the exchange K; < K.

2. Expression in real time

We next invert the Fourier transforms with respect to time in order to compute

® dw; ® dw, ® dws |
(Pky, t1)plka, t2)p(ks3, t3))c =/ 2—1e‘wm/ _Zela)sz/ —Ze 0 (B(ky, w1)p(ka, 02)p k3, 3))e. (D21)
oo 2T oo 2W o0 2T

Using the fact that the correlation function is in fact proportional to §(w; + w; + w3), we get, using the definition of 3
[Eq. (D16)],
> d&ei(uz(lz

sk, ko ks, 01, 07, —01 — @).
o 2T

© dw; .
(Bller, 1D s, )P ks, 13))e = )5k, + Ky + k3) / it =) /

(D22)

One can get a general expression without making any assumption of the order of the times 71, f,, and #3, i.e., by defining quantities
like o, = sgn(t, — t5), and expressing the final result in terms of o,;. To simplify, we make the choice 0 < #; < 1, < 13, and the
result reads

(=12~ (6 -1)
(2 — Qp + 23)(1 +vy)

ks - (ki +kyvy) e” BTN TBTR L (fyuy + k) e” BRI
(I+v)(I+v2) Q3—Q—Q (I+v)(I+vs) Q) —Q—Q

k- (kyv + k3v3) e~ (=111 = (1-1)
IT+v)(1+wv3) 29— Q1+

2Dk§k3 . (k11)1 +k2U2)
Q) + Q2 — Q3

(plky, t)plka, t2)p(ks, t3))c = POD{ [ —2k; - k3]

ooV (k)
kgT

where we use the shorthand notations v; = and Q; = DE*(1 + %). Finally, taking f, =t3 =t > 0 and t; = 0, we

get Eq. (16) in the main text.
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APPENDIX E: EXPRESSION OF THE FOUR-POINT
CORRELATION FUNCTION

In this Appendix, we give details on the expression of
the four-point correlation function Ci(K,, K>, K5, K4) whose
expression is provided in the variables (k,r) with times
ordered as 0 <t} <t <t3 <t in the associated Python
notebook [59]. To this end, we first recall the expressions of
the two- and three-point correlation functions, and then we
show how they relate to the four-point correlation function.

First, we recall the definition of the amplitude v, associ-
ated with the n-point correlation function C, [see Eq. (10) in
the main text]:

Cn(Klv cee vKn) = /00(27T)d+11/fn(K1, cee vKn)S (ZK1>7

(ED)
such that the amplitgde Y, associated with the two-point
correlation function C,, given by Eq. (11) in the main text,
reads

V2 (K1, K>) = =2D ky - ky G(K1)G(K?). (E2)

With this expression, 3, given by Eq. (D18), can be written
as a function of r;:

V3(K1, Ko, K3) =T3(K1, K2)¥2(K3) + T'3(K1, K3)92(K>)

+ I'3(K2, K3)Y2(K ). (E3)

Here, ¥ (K) denotes v»(—K, K), and the function I';(K, K')
is given by

T3(K,K') =2 (K, K') + p k - K'[GEK)V (K)o (K')

+K < K']. (E4)

Finally, following the same steps as in Appendix D and ex-

panding up to third order in A, one obtains the four-point

correlation function. Although the calculation is cumbersome,
the result reads

Va(K1, K>, K3, K4q)
=T4(Ky, K0)Y3 (K1 + Ky, K>, K3)
+ T4(Ky, K3){To (K1, K> 4+ K3)Y(Ky4)
+ [2(K4, K2 + K3)Y2(K1)
+ ki - (ko +k3) V(k)GK> + K3)yo (K1Y (Ks)
+ kg - (ky +k3) V (k)G (K2 + K3)Y2 (K1 )Y (K
+ 42+ 43, (ES)

where the function I'4 is defined as

Ty(K,K') =T3(K,K') = nVk+K) (k+K)
[k KW (K) + K < K'1. (E6)

As written, the four-point correlation function (E5) is
not explicitly symmetric under the exchange K; < K,
but we have verified this symmetry numerically. Further-
more, the Fourier transform with respect to @ can be
inverted, and the expression of the four-point correlation
function Cs(ky, ko, k3, k4311, 10, 13, 14), with times ordered as

1.01

0.8+

V(x)/e

0.4 1

0.2 1

0.0

0.0 05 1.0 15 2.0
x/o

FIG. 3. Plot of the interaction potential used in the Brownian
dynamics simulations: V (x) = &(1 — x/0 )>@(c — x).

0 <t <t <tz <ty, is provided in the associated Python
notebook [59].

APPENDIX F: NUMERICAL SIMULATIONS

We performed Brownian dynamics simulations, i.e., time-
integration of the overdamped Langevin equation given as
Eq. (1). For a one-dimensional system, the integrated equa-
tion reads

Xa(t +81) = X (1) — 118t Y V'(Ixe — xp]) + V2D51Zp .,
pta

(F1)
where Zj is a random number drawn from a normal dis-
tribution of mean O and variance 1. The N = 100 particles
are initially placed uniformly on a line of length L (which
is chosen to attain the chosen density po = N/L). The parti-
cles interact via a harmonic repulsive potential, which reads
Vix)=-¢e(l —x/a)2®(0 —x), where ® is the Heaviside
function (see Fig. 3 for a plot of the interaction potential). Its
derivative, which is needed to compute the forces in Eq. (F1),
reads V'(x) = —2&(1 — x/0)® (o — x). The length o is taken
equal to 1 and sets the unit length of the simulation. We also
take D = p = 1 (this sets the typical diffusive timescale 62/D
to 1), and ¢ = 0.5kgT . The integration time step is 6t = 0.01.

The simulation is initally run for 10* steps, for equili-
bration. The correlation functions shown in the main text
are computed on the next 10* steps: at each time step, the
Fourier transform of the microscopic density is computed as
Pk, 1) =Y N_ e *%® Importantly, since the system has pe-
riodic boundary conditions, the wave vectors k must be chosen
as multiples of 27 /L [66]. The structure factors and correla-
tion functions are computed directly from their definition in
the main text in terms of the functions p(k, ¢), and averages
are performed over initial conditions and noise realisations
(typically 2 x 10* independent realizations).

Finally, we emphasize that analytical calculations are per-
formed in the thermodynamic limit where N, L — oo with a
fixed density pgp = N/L. Results for finite-size systems, which
are required to make comparisons with numerical simulations,
can be obtained by making the change §(k) — [V/(27)]dk.0-
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