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Recent molecular dynamics simulations of glass-forming liquids revealed superdiffusive fluctuations

associated with the position of a tracer particle (TP) driven by an external force. Such an anomalous

response, whose mechanism remains elusive, has been observed up to now only in systems close to their

glass transition, suggesting that this could be one of its hallmarks. Here, we show that the presence of

superdiffusion is in actual fact much more general, provided that the system is crowded and geometrically

confined. We present and solve analytically a minimal model consisting of a driven TP in a dense,

crowded medium in which the motion of particles is mediated by the diffusion of packing defects, called

vacancies. For such nonglass-forming systems, our analysis predicts a long-lived superdiffusion which

ultimately crosses over to giant diffusive behavior. We find that this trait is present in confined geometries,

for example long capillaries and stripes, and emerges as a universal response of crowded environments to

an external force. These findings are confirmed by numerical simulations of systems as varied as lattice

gases, dense liquids, and granular fluids.
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Active microrheology monitors the response of a
medium while in the presence of a tracer particle (TP)
manipulated by an external force. It has become a powerful
experimental tool for the analysis of different systems such
as colloidal suspensions [1–5], glass forming liquids
[6–10], fluid interfaces [11], or live cells [12,13]. It con-
stitutes a striking realization of a key problem in statistical
physics which in a much broader context aims at determin-
ing the response of a medium to a perturbation created by a
driven TP [14–16]. A considerable amount of knowledge
has been gathered on the forms of the so-called force-
velocity relation, that being the dependence of the TP
velocity v on the value of the applied force F, both in
the linear and the nonlinear response regimes.

Behavior beyond the force-velocity relation was
recently addressed numerically in the pioneering work of
Ref. [7], which studied via molecular dynamics simula-
tions the dynamics of an externally driven, or biased TP in
a glass-forming liquid (a dense binary Yukawa liquid).
It was recognized that while the TP moves ballistically,
i.e., hXti � vt, the variance �2

x ¼ hðXt � hXtiÞ2i of the TP
position Xt along the bias grows surprisingly in a super-
diffusive manner with respect to time t, so that �2

x � t�,
where � is within the range 1.3–1.5. For such systems, this
effect was found only in the close vicinity of the glass
transition while regular diffusion was recovered away from

the transition [8], suggesting that such anomalous behavior
could be a distinct feature of being close to the glass
transition.
A number of attempts have been made to explain these

findings, based either on a random trap model [7], mode
coupling theory [8], or continuous-time random walks
(CTRWs) [10]. All of these approaches rely on the notion
of a complex energy landscape and thereby assume that the
system is close to the glass transition. However, they do not
provide a quantitative nor qualitative understanding of the
superdiffusive behavior. In particular, the question of
whether superdiffusion is the ultimate regime or only a
transient is still open [9,10].
Here, we show that in fact superdiffusion in active

microrheology settings can appear away from the glass
transition, and even independently of glassy properties.
Based on a simple model that does not involve any com-
plex energy landscape or kinetic constraints, we demon-
strate that superdiffusion emerges universally in confined
crowded systems. We fully quantify this superdiffusion,
show that it is long-lived, highlight the key role of the
system’s geometry, and provide a clear physical mecha-
nism underlying such behavior.
Our starting point is a minimal model of a crowded

system in which the motion of particles and of the TP
is mediated by so-called ‘‘diffusive’’ packing defects, or
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vacancies that are sufficiently large in size to allow their
diffusive motion to proceed through direct swapping of
their positions with the host medium particles. Note that
the existence of such defects is tacitly assumed in various
models of crowded systems [17–19]. Within this picture,
the TP moves only when a defect arrives to its location.

More precisely, we consider a lattice gas model where
the particles in the medium perform symmetric random
walks on a d-dimensional lattice constrained by hard-core
interactions between the particles, so that there is at most
one particle per lattice site. The TP performs a random
walk biased by an external applied force F ¼ Fe1 (see
Fig. 1 and the Supplemental Material [20] for a detailed
description of the dynamics), hindered by hard-core inter-
actions with the host particles. Note that this description
represents a combination of two paradigmatic models of
nonequilibrium statistical mechanics: asymmetric (for the
TP) and symmetric (for the host particles) simple exclusion
processes [21]. Until now, only the force-velocity relation
has been analyzed for such a model [22,23], with the
exception of single file systems for which the variance
has been calculated [24,25] and infinite 2D systems, where,
however, only a particular limit of the variance was
considered [26,27] (see also Ref. [28] for qualitative argu-
ments in various geometries). Below, we describe the main
steps of a method of calculation that allows us to determine
the full dynamics of the variance in dense systems. We
present the results and highlight their physical meaning in
the main text, while we provide the technical details of
calculations in the Supplemental Material [20].

The first step of the calculation consists in solving an
auxiliary problem that involves a single vacancy. It relies
on the remark done in Ref. [29] that for 2D systems, in the
absence of driving force and for small values of the density
of vacancies �0, the dynamics of the TP can be deduced
from the analysis of the joint dynamics of the TP and a
single isolated vacancy. As a matter of fact, this is still true
for a biased TP in any dimension. In the Supplemental
Material [20], we show how to account for both the non-
trivial waiting time distribution and the anticorrelation

effects between consecutive steps of the driven tracer,
which are in fact induced by the dynamics of a single
diffusing vacancy. The determination of the propagator
of the TP in the presence of a single vacancy is shown to
reduce to the calculation of first-passage time distributions
of this vacancy at the site occupied by the TP. It is impor-
tant to realize that the vacancy itself performs a simple
random walk, symmetric everywhere except in the vicinity
of the TP, because of the presence of the bias. These first-
passage time distributions can be determined by using
standard methods of random walks with defective sites
[30]. In the second step of the calculation, the variance of
the TP in the presence of the density of vacancies �0 is
deduced from the knowledge of both the single vacancy
propagator and the first-passage time distributions men-
tioned above. Such exact asymptotic expressions of the
variance �2

x are finally obtained for various geometries and
for arbitrary values of the dimensionless force f ¼ ��F
(where � is the lattice step and � is the reciprocal tem-
perature). These are valid at large times and low vacancy
densities, and are summarized below.
Superdiffusive regime.—First, our approach predicts the

following large-t behavior of the variance �2
x in the leading

order of �0:

lim
�0!0

�2
x

�0

�
t!12a

2
0t�

8
>>>>>><

>>>>>>:

ð4=3 ffiffiffiffi
�

p
LÞt1=2 2D stripe;

ð2 ffiffiffiffiffiffiffiffiffiffiffiffi
2=3�

p
=L2Þt1=2 3D capillary;

��1 lnðtÞ 2D lattice;

Aþ cothðf=2Þ=ð2a0Þ 3D lattice;

(1)

where a0 is an f-dependent constant

a0 ¼ sinhðf=2Þ
coshðf=2Þ½1þ 2d�

2d��� þ d� 1
; (2)

A¼ P̂ð0j0;1Þþ2ð13��6Þ=½ð2þ�Þð��6Þ�, d is the sys-

tem dimension, � ¼ lim�!1�½P̂ð0j0;�Þ � P̂ð2e1j0;�Þ�,
and P̂ðrjr0;�Þ is the generating function (discrete
Laplace transform) of the propagator of a symmetric sim-
ple random walk (see the Supplemental Material [20] for
the explicit expressions). These surprisingly simple exact
expressions unveil the dependence of the variance on time,
width L of the stripe or of the capillary, and on the reduced
driving force f. Figure 2 shows an excellent quantitative
agreement between the analytical predictions and the
numerical simulations: The time, width, and driving force
dependences are unambiguously captured by our theoreti-
cal expressions.
A number of important conclusions can be drawn from

this result. (i) Superdiffusion with an exponent � ¼ 3=2
takes place in confined, quasi-1D geometries, those being,
infinitely long 3D capillaries and 2D stripes. This result is
quite counterintuitive: indeed, in the absence of driving
force it is common to encounter diffusive, or even

F

FIG. 1 (color online). The model; a discrete lattice in which
sites are occupied by identical hard-core medium particles (blue
spheres). The red sphere denotes the tracer particle (TP) which,
in addition to hard-core interactions, is subject to an external
force F ¼ Fe1, and thus has asymmetric hopping probabilities.
The arrows of different size depict schematically the hopping
probabilities; a larger arrow near the TP indicates that it has a
preference for moving in the direction of the applied field. Jumps
are possible only when a vacancy (in concentration �0) is
adjacent to a particle.
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subdiffusive growth of the fluctuations of the TP position in
such crowded molecular environments [19], however, not
superdiffusion. (ii) The superdiffusion in such systems
emerges beyond (and therefore cannot be reproduced
within) the linear response-based approaches: The prefac-
tor in the superdiffusive law is proportional to f2 when
f ! 0. Despite the presence of the superdiffusion, the
Einstein relation is nonetheless valid for systems of arbi-
trary geometry due to subdominant (in time) terms whose
prefactor is proportional to f. (iii) In unbounded 3D sys-
tems�2

x grows diffusively and not superdiffusively. (iv) For
d ¼ 1 (single files), one finds � ¼ 2, so that a0 ¼ 0, and
no superdiffusion can take place, in agreement with [25].
As a matter of fact, in this case the variance grows
subdiffusively. Finally, this shows that superdiffusion is
geometry-induced and the recurrence of the random walk
performed by a vacancy is a necessary but not sufficient
condition in order for superdiffusion to occur.

Giant diffusion regime.—The exact analytical result in
Eq. (1) provides explicit criteria for superdiffusion to
occur. Technically, this yields the behavior of the variance
when the limit �0 ! 0 is taken before the large-t limit.
It, however, does not allow us, due to the nature of the limits
involved, to answer the question whether the superdiffusion
is the ultimate regime (or just a transient), which requires
the determination of limt!1�2

x at fixed �0. Importantly,
we find that the order in which these limits are taken
is crucial in confined geometries (limt!1lim�0!0�

2
x �

lim�0!0limt!1�2
x). The methodology described above is

still applicable but it is crucial to realize that now, between
two consecutive visits of the TP, a given vacancy experi-
ences an effective bias due to the motion of the TP resulting
from its interaction with the rest of the vacancies. In par-
ticular, the first-passage time densities involved in the
single vacancy problemmentioned previously are modified.
Quite surprisingly, this effective bias, even if arbitrarily
small in the �0 ! 0 limit, dramatically affects the ultimate
long-time behavior of the variance in confined geometries.
More precisely, we show that the superdiffusive regime

is always transient for an experimentally relevant system
with �0 fixed, while the long-time behavior obeys

lim
t!1

�2
x

t
�

�0!0

8
>>><

>>>:

B quasi-1D;

4a20�
�1�0 lnð��1

0 Þ 2D lattice;

2a20½Aþ cothðf=2Þ=ð2a0Þ��0 3D lattice;

(3)

i.e., is always diffusive. The constant B depends on the
driving force f and on the geometry (quasi-1D in this case)
of the system. This long-time diffusive behavior has sev-
eral remarkable features: In dense quasi-1D systems the
variance is independent of �0, meaning that the corre-
sponding longitudinal diffusion coefficient Dk is enhanced
in comparison to the transverse one D? by a factor 1=�0,
which may attain giant values in systems with �0 � 1.
In 2D this effect is negligible and Dk is only a factor

lnð��1
0 Þ larger than D?. In unbounded 3D systems no

such strong anisotropy between Dk and D? will emerge.

Full dynamics: scaling regime and crossover.—Finally,
our approach provides the complete time evolution of the
variance in the regime corresponding to �0 � 1 and at a
sufficiently large time t, that interpolates between the two
limiting regimes of superdiffusion and giant diffusion
listed above. In this regime, it is found that

�2
x �

8
>>><

>>>:

tgð�2
0tÞ quasi-1D;

� 2a20
� �0t lnðð�0a0Þ2 þ 1=tÞ 2D lattice;

2a20½Aþ cothðf=2Þ=ð2a0Þ��0t 3D lattice;

(4)

where the scaling function g is explicitly calculated and

satisfies gðxÞ �
x!0

x1=2 and gðxÞ �
x!1const. Figure 3 reveals

excellent quantitative agreement between the analytical
predictions and the numerical simulations. Several com-
ments are in order. (i) Equation (4) encompasses both
limiting behaviors (1) and (3), and shows explicitly that
the limits t ! 1 and �0 ! 0 in quasi-1D and 2D systems
do not commute; (ii) In such systems the superdiffusion
persists up until the onset of the giant diffusive behavior at
times t� � 1=�2

0, which can be very large when �0 � 1.
Superdiffusion is therefore very long-lived in such sys-
tems. Despite its transient feature, we thus expect super-
diffusion to be a robust characteristic of confined crowded

FIG. 2 (color online). Studied geometries and reduced vari-
ance as a function of time in the superdiffusion regime. (a)
Sketch of stripe- and capillarylike geometries. (b) Simulations in

capillaries [empty symbols, �ðtÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
3�=2

p
L2=ð4a20�0tÞ�2

xðtÞ]
and stripes [filled symbols, �ðtÞ ¼ 3

ffiffiffiffi
�

p
L=ð8a20�0tÞ�2

xðtÞ] with
density �0 ¼ 10�5, and theoretical prediction (solid line,

ffiffi
t

p
).

(c) Simulations on a 2D lattice with density �0 ¼ 10�5 and
�ðtÞ¼ �

2a0
½�2

xðtÞ=ð�0a0tÞ�ð2a0=�Þðln8þ	�1Þ�2a0�ð5�2�Þ=
ð2��4Þ�cothðf=2Þ� and theoretical prediction (solid line, lnt).
(d) Simulations on a 3D lattice with density �0 ¼ 10�6 and
�ðtÞ ¼ ½�2

xðtÞ=ð�0tÞ � a0 cothðf=2Þ�=ð2a20Þ and theoretical

prediction [solid line: A, defined after Eq. (1)].
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systems and we anticipate that the ultimate diffusive
behavior might be in practice difficult to observe.

The physical mechanism responsible for the emergence
of the geometry-induced superdiffusion, revealed by our
exact approach, can be ascertained in the large f limit by a
mean-field version of the model, which stipulates that after
each interaction between the TP and a vacancy, all the other
vacancies remain uniformly distributed. The model can
then be reformulated as an effective CTRW that takes
into account explicitly the dynamics of the diffusive vacan-
cies. This is in contrast to the CTRWapproach presented in
Ref. [10] for glassy systems, which infers the mean and the
variance of the waiting-time distribution from the numeri-
cal data. In the quasi-1D case, the waiting time of the first
jump of the TP is extracted from the distribution�dS1=d
,
where S1 is the well-known survival probability of an
immobile target in a sea of diffusing predators S1ð
Þ /
expð��0

ffiffiffi



p Þ [31]. Waiting times of subsequent jumps are
then drawn from the distribution�d½Tð
ÞS1ð
Þ�=d
, where
Tð
Þ is the survival probability of an immobile target
chased by a single random walker that starts near the target
[31]. Using the waiting time distribution described here,

standard calculations show the following. (i) Superdiffusion
with an exponent � ¼ 3=2 appears as a result of repeated
interactions between the TP and a single vacancy in
quasi-1D systems. This explains, in particular, why no
superdiffusion takes place in strictly single-file systems,
for which the cumulative displacement of the TP due to
interactions with a single vacancy amounts to at most one
lattice step. (ii) Diffusive behavior is established ultimately,
when other vacancies start to interact with the TP, after a
cross-over time which scales as 1=�2

0. Note that while this

mean-field approach reproduces the scaling properties of
the variance with respect to the time and the density, it is
unable to predict the correct width and driving force
dependencies provided by our exact treatment.
Altogether, our results show that the emergence of

superdiffusion of a driven TP crucially depends on the
system’s geometry, an aspect so far disregarded in this
context. In order to quantitatively confirm our predictions
on further crowded nonglassy systems, we performed off-
lattice simulations investigating the dynamics of a biased
TP confined to a controlled quasi-1D geometry for models
of monodisperse dense liquids (colloidal particles) and
monodisperse granular fluids (using an algorithm similar
to the one presented in Ref. [32]). In Fig. 4 we plot the
properly rescaled variance, where a clear data collapse is
visible. This validates the time, width, and driving force
dependences that feature in our analytical expression (1)
also for off-lattice systems. Finally, our analysis shows that
superdiffusion is not the hallmark of glassy systems but is a
generic feature of driven dynamics in confined crowded
systems.
Support from European Research Council starting Grant

No. FPTOpt-277998, the Academy of Finland, and the EU
IRSES DCP-PhysBio N269139 project is acknowledged.

FIG. 3 (color online). Top: rescaled variance as a function of
rescaled time �2

0t on stripelike lattices (L ¼ 3) for different

densities [solid line, gð�2
0tÞ]; see the Supplemental Material

[20]. Bottom: rescaled variance �ðtÞ ¼ �2
xðtÞ=ð�0tÞ �

ð2a20=�Þ lnð1=�2
0a

2
0Þ as a function of rescaled time �2

0t on

a 2D infinite lattice for different densities [solid line, hð�2
0tÞ]

with hðxÞ ¼ ð2a20=�Þ ln½a20x=ð1 þ a20xÞ� þ a0 cothðf=2Þ þ
2a20�ð5 � 2�Þ=ð2� � 4Þ þ ð2a20=�Þðln8 þ 	 � 1Þ.

FIG. 4 (color online). Rescaled variance L�2
xðtÞ=v2 as a func-

tion of time obtained from off-lattice simulations for different
widths of stripes L and forces f (it can be shown that v� a0 in
the superdiffusion regime). CF: molecular dynamics of colloidal
fluids in confined striplike geometries. GF: simulations of dense
monodisperse granular fluid in confined striplike geometries; e
stands for the restitution parameter. More details on off-lattice
simulations are given in the Supplemental Material [20].
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