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ABSTRACT
Understanding the dynamic behavior of polar fluids is essential for modeling complex systems such as electrolytes and biological media. In
this work, we develop and apply a stochastic density functional theory (SDFT) framework to describe the polarization dynamics in the Stock-
mayer fluid, a prototypical model of dipolar liquids consisting of Lennard-Jones particles with embedded point dipoles. Starting from the
overdamped Langevin dynamics of dipolar particles, we derive analytical expressions for the intermediate scattering functions and dynamic
structure factors of the longitudinal and transverse components of the polarization field, within linearized SDFT. To assess the theory’s valid-
ity, we compare its predictions with results from Brownian Dynamics simulations of the Stockmayer fluid. We find that SDFT captures the
longitudinal polarization fluctuations accurately, while transverse fluctuations are underestimated due to the neglect of dipolar correlations.
By incorporating the Kirkwood factor into a modified SDFT, we recover quantitative agreement for both components across a range of dipole
strengths. This study highlights the utility of SDFT as a coarse-grained description of polar fluid dynamics and provides insights into the role
of collective effects in polarization relaxation.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0292306

I. INTRODUCTION

Understanding the microscopic behavior and organization of
polar solvents, such as water, is a fundamental question in the field
of chemical physics.1–3 This challenge has direct relevance to a broad
spectrum of applications, ranging from the design of advanced bat-
teries and fuel cells in electrochemistry4 to the behavior of charged
soft matter systems such as colloids and biological fluids.5–7 Accurate
prediction of solvent structure and dynamics from first principles
is especially difficult due to the complex interplay between thermal
fluctuations, electrostatic and steric interactions, and the challenge
of accounting for the orientation of the molecules.

From a theoretical point of view, two complementary
approaches have emerged to address these questions. On the one
hand, particle-based simulation methods, such as molecular dynam-
ics, offer detailed insights into the time evolution of individ-
ual solvent molecules.8–14 For instance, proposing accurate force

fields to describe the structure and dynamics of water has been
a central goal of computational physical chemistry during the
past decades, resulting in a wealth of well-calibrated options.15–19

On the other hand, analytical frameworks enable a more general,
and often more computationally efficient, exploration of such sys-
tems. Their static structure can be accurately predicted, e.g., using
field-theoretical descriptions,20–22 or (molecular-) density functional
theory.23–26 Describing their dynamical response requires other
tools, such as dynamical extensions of the density functional theory
or mode-coupling-like theories.

For example, a theoretical model for the orientational dynam-
ics of a polar solvent was proposed by Chandra and Bagchi.27–29

Building on the Smoluchowski–Vlasov equation,30 they developed
a dynamical density functional theory (DDFT) framework for ori-
entable particles, which under appropriate closure approximations,
yields deterministic equations for the evolution of the polarization
field. Subsequent studies refined this framework to account for the
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intermolecular interactions and investigated condensed matter phe-
nomena such as polarization relaxation, solvation dynamics, and
dielectric friction.31–35 A comprehensive review of classical dynam-
ical density functional theory can be found in Ref. 36. While DDFT
successfully establishes a link between microscopic and collective
relaxation dynamics,37 its deterministic evolution equations allow it
to only describe the average dynamical behavior of the system and
provides no information on the fluctuations around this average. As
a result, the DDFT framework becomes inadequate for probing the
microscopic origins of fluctuation-induced phenomena in bulk or
confined systems.38,39

A viable solution to the limitation of deterministic DDFT is
to use more general theoretical models with intrinsic stochastic
descriptions.40–43 Within this category, stochastic density functional
theory (SDFT) has become an important tool to investigate the
dynamics of interacting entities, such as colloids or molecules, on the
microscopic and nanoscopic scales.44 Building on the foundational
studies of Kawasaki41 and Dean,43 who introduced a formalism to
coarse-grain the dynamics of interacting Langevin particles, SDFT
provides a powerful theoretical framework to describe the time evo-
lution of density fields under thermal noise. In physical chemistry,
this framework was applied to study electrolyte solutions, and more
specifically conductivity under various conditions,38,45–52 spatial and
temporal ionic correlations,53,54 and viscosity in charged fluids.55–57

This approach was later extended to include orientational degrees
of freedom. In this context, the BBGKY hierarchy of equations and
its different closures were discussed.58 Using DDFT-like closure
schemes, static as well as dynamic correlations were computed from
this approach59–61 but were not compared to numerical simulations,
therefore, limiting the applicability of the approach for describing
real systems.

In this context, we recently proposed a SDFT description of
water62 as a solvent for ions. In this model, water molecules are
represented as dipoles with translational and rotational motion
that interact with each other through electrostatic interactions.
Importantly, this model does not include any short-range repul-
sion between the dipoles. They are not meant to represent water
molecules: instead, they represent “polarized blobs,” and the para-
meters of the model can be chosen in such a way that the target
properties of water are reproduced. The main outcomes of this work
are the intermediate scattering functions associated with the longi-
tudinal and transverse polarizations. Derived quantities, such as the
power spectral density, are obtained straightforwardly. We showed
that this simple representation of the solvent was valid in the limit of
low frequencies and small wavevectors.

The goal of the present work is to investigate dynamical corre-
lations in a standard model for dipolar liquids (Stockmayer fluid,
consisting of particles interacting via point dipoles and Lennard-
Jones potentials) and to assess how well these correlations are
captured with SDFT in the linearization approximation and neglect-
ing short-range nonelectrostatic interactions, for which analytical
results were obtained in Ref. 62.

To this end, we first derive analytical expressions for the time-
dependent polarization fluctuations from SDFT, building upon our
previous framework for polar solvents. We then perform Brown-
ian Dynamics (BD) simulations of the Stockmayer fluid to serve
as a microscopic reference. By systematically comparing SDFT pre-
dictions with simulation data across various dipole moments and

diffusion coefficients, we identify the strengths and limitations of
the theory. We find that while SDFT reproduces the longitudinal
polarization dynamics quantitatively, it underestimates transverse
fluctuations due to the neglect of dipole–dipole correlations. By
incorporating the Kirkwood g-factor into a modified SDFT for-
mulation, we achieve much improved agreement, particularly for
the transverse component. These results establish SDFT as a viable
coarse-grained model for capturing the essential features of polar-
ization dynamics in dipolar fluids and provide a framework for
extending this approach to more complex polar media.

II. POLARIZATION FLUCTUATIONS IN POLAR FLUIDS
A. Microscopic description

The system of interest is made of N solvent molecules in
a volume V , represented as dipoles of dipolar moment p. Their
number density is indicated by Cs = N/V , and their positions and
unit orientations at time t are denoted by r1(t), . . ., rN(t) and
û1(t), . . . , ûN(t), respectively. The microscopic polarization density
is defined as

P(r, t) ≡
N

∑
i=1

pûi(t)δ(r − ri(t)). (1)

In Fourier space, the polarization vector field can be decom-
posed into a longitudinal and transverse parts (with respect to the
wavevector q), with Cartesian components,

P̃a(q, t) =
qaqb

q2 P̃b(q, t)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡P̃L,a(q,t)

+ (δab −
qaqb

q2 )P̃b(q, t)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡P̃T,a(q,t)

, (2)

where an implicit sum over index b is assumed. Note that, through-
out this paper, we will use the following convention for Fourier
transformation: f̃ (q) = ∫dr e−iq⋅r f (r) and f (r) = ∫

dq
(2π)3 eiq⋅r f̃ (q).

Explicitly, the longitudinal component P̃L is the projection of P̃(q, t)
in the direction of the wavevector q, and the transverse component
is the remainder P̃T = P̃ − P̃L.

The spatio-temporal fluctuations of these components of polar-
ization are described by the corresponding intermediate scattering
functions (ISF),

FL,T(q, t) ≡
1
N
⟨P̃L,T(q, t) ⋅ P̃L,T(−q, 0)⟩, (3)

where ⟨. . .⟩ denotes an ensemble average and we have used the fact
that for a bulk fluid, the ISF only depends on the magnitude q but
not on the orientation. The initial value of the ISF is simply the static
polarization structure factor,

SL,T(q) ≡
1
N
⟨∣P̃L,T(q)∣

2
⟩. (4)

The static fluctuations of the total dipole M = P̃(q = 0) = ∑i pûi are
often characterized by the so-called Kirkwood g-factor,

gK =
⟨M2
⟩

Np2 , (5)
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which is a measure of the local orientational correlations between
neighboring dipoles.63–65 For uncorrelated dipoles, ⟨M2

⟩ = Np2 and
the Kirkwood factor is equal to 1.

The dynamics is often also considered in the frequency domain,
introducing the Laplace transforms with (with Laplace variable
s = −iω) ˜̃f (ω) = ∫

∞

0 f (t) e+iωtdt, or the power spectral densities
(PSD) also known as dynamic structure factors,

SL,T(q, ω) = ∫
∞

−∞
FL,T(q, t) e+iωtdt = 2R[ ˜̃FL,T(q, ω)], (6)

where the last equality follows from the fact FL,T(q, t) are even
functions of time.

B. Properties of interest
The ISF and PSD, which describe the equilibrium fluctua-

tions of the polarization, are directly related to important quantities
describing the linear response of the polar fluid to an external field
Eext(q, ω). We refer the reader to Ref. 38 for a more comprehen-
sive discussion of electrical fluctuations in electrolytes and their link
between a variety of observable properties, but for the present work,
we consider the permittivity tensor, which relates the polarization
to the local electric field P(q, ω) = ε0[ε(q, ω) − I] ⋅ E(q, ω), with ε0
being the vacuum permittivity. The link between its longitudinal
and transverse components and the corresponding susceptibilities
depend on the boundary conditions (in particular, in simulations
using periodic boundary conditions). For q ≠ 0, one has66–68

χL(q, ω) = 1 −
1

εL(q, ω)
, (7)

χT(q, ω) = εT(q, ω) − 1. (8)

For non-polarizable systems, the longitudinal susceptibility is related
to the ISF Eq. (3) and its Laplace transform as3,65,69,70

χL,T(q, ω) =
βN

Vε0νL,T
[SL,T(q) + iω ˜̃FL,T(q, ω)], (9)

where β = 1/kBT (kB is the Boltzmann constant and T is the tem-
perature) and where νL = 1 and νT = 2. The above-mentioned results
establish a direct link between the microscopic structure and dynam-
ics of the system with key properties of polar fluids. Decades of the-
oretical approaches with various levels of refinement and computer
simulations have already provided many important results.

The static permittivity εr ≡ ε(q = 0, ω = 0) of the system
described in Sec. II A, which is a material property, is related to the
static fluctuations of total dipole (see e.g., Ref. 65). This link is rather
subtle because the polarization fluctuations also depend on the shape
of the considered system and the dielectric properties of the medium
in which it is “embedded.” This is particularly important to compute
the permittivity in simulations under periodic boundary conditions.
In particular, for a spherical sample embedded in a medium with
permittivity ε′ (see e.g., Refs. 71 and 72), one has

(εr − 1)(2ε′ + 1)
2ε′ + εr

= 3ygK , (10)

where gK is as defined in Eq. (5) and y is a dimensionless parameter
often found in the literature on polar systems,

y ≡
Csp2

9ε0kBT
=

Csαor

3
. (11)

In the second expression, we have introduced the orientational
polarizability αor = p2

/3ε0kBT characterizing the linear response of
a single dipole at temperature T to an external field. This quantity
is a characteristic volume and its product with the number density
Cs in the y parameter controls the importance of dipolar couplings
in the system, just as the product CsΛ3, with Λ being the de Broglie
thermal wavelength, controls that of quantum effects, or the prod-
uct Csσ3, with σ being a particle diameter, controls that of excluded
volume.

When the permittivity of the embedding medium has the same
permittivity as the system of interest (ε′ = εr), Eq. (10) results
in the Kirkwood formula (εr − 1)(2εr + 1)/εr = 9ygK , whereas for
ε′ = 1, one recovers the Clausius–Mossotti equation (εr − 1)/
(εr + 2) = ygK , and in the limit ε′ →∞ (so-called “tin-foil” bound-
ary conditions in Ewald summation used in most simulations),
Eq. (10) reduces to

εr − 1 = 3ygK. (12)

Another important physical insight is the anisotropy of the
dipole fluctuations. For example, the static longitudinal fluctuations
of the dipole are smaller than the transverse ones,65 by a factor εr in
the q→ 0 limit,

lim
q→0

SL(q)
ST(q)

=
1
εr

. (13)

The dynamics of polarization fluctuations can be characterized
by effective relaxation times defined as the integral of the normalized
correlation functions,

τL,T(q) = ∫
∞

0

FL,T(q, t)
SL,T(q)

dt =
˜̃FL,T(q, 0)
SL,T(q)

. (14)

The longitudinal polarization fluctuations decay faster than the
transverse ones, with a ratio of characteristic times,37,65,73

lim
q→0

τL(q)
τT(q)

=
1
εr

. (15)

From a microscopic perspective, this can be understood in the limit
of a large permittivity: while parallel components of the dipoles (i.e.,
their contribution to the longitudinal quantities) tend to compen-
sate each other and, therefore, decrease the time it takes to modify
SL(q = 0) significantly, their perpendicular components tend to
reinforce each other and, therefore, make their relaxation slower.65,73

Experimentally, one can only measure the q→ 0 limits of the
longitudinal and transverse components of the permittivity tensor,
which coincide. It is customary to analyze the permittivity using the
Debye model (or a sum of Debye modes),

ε(ω) = lim
q→0

εL(q, ω) = lim
q→0

εSDFT
T (q, ω)

= 1 +
εr − 1

1 − iωτD
, (16)
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where the Debye time τD characterizes the dynamics of collec-
tive polarization fluctuations. This time can also be related to the
individual dipole dynamics (in the presence of the other dipoles),
characterized by

τp = ∫

∞

0
⟨ûi(t) ⋅ ûi(0)⟩ dt, (17)

where the unit vector describing the orientation of dipole i follows
Eq. (19). Note that this is not the definition in Ref. 65, even though
it must coincide for exponential relaxation.

III. STOCHASTIC DENSITY FUNCTIONAL THEORY
FOR A POLAR FLUID

In this section, we introduce the SDFT description for the
dynamics in polar fluids, corresponding to the ion-free case of
the more general results presented in Ref. 62 for electrolytes. We
then summarize the main results for the polarization fluctuations
in the absence of ions, which had not been reported in our previ-
ous work. Finally, we discuss the relevance of this level of theory to
describe polar fluids, in order to clarify the points to be addressed by
comparison with microscopic simulations of such systems.

A. Governing equations
In the overdamped limit, the evolution equations of the

positions and orientations read

dri

dt
= −μs(pûi ⋅ ∇)∇φ(ri)

− μs∑
j≠i
∇V(ûi, ûj , ri − r j) +

√
2Dsξt

i(t), (18)

dûi

dt
= {−[μr

spûi ×∇φ(ri)] +
√

2Dr
sξr

i (t)} × ûi, (19)

where Ds is the translational diffusion coefficient and Dr
s is the rota-

tional diffusion coefficient of the polar molecules, with their associ-
ated mobilities defined as μs = βDs and μr

s = βDr
s . The translational

and orientational noises ξt
i(t) and ξr

i (t) are uncorrelated Gaussian
white noises of zero average and unit variance, i.e., ⟨ξα

i,n(t)ξ
γ
j,m(t

′
)⟩

= δαγδmnδijδ(t − t′), where n or m are components of the vectors
and Greek letters refer to particle labels. V(r) is the interparticle
potential, which may account for short-range steric repulsion—this
term is not included in our SDFT analysis, but will be considered
in the numerical simulations. φ(r) is the electrostatic potential at
the position r, respectively, and is obtained by solving Poisson’s
equation,

−∇
2φ(r) =

ρs(r)
ε0

, (20)

where ρs is the charge density associated with the polar molecules.

B. Polarization fluctuations
The microscopic polarization density is defined as

P(r, t) ≡
N

∑
i=1

pûi(t)δ(r − ri(t)). (21)

The charge density will be considered within the dipolar approxi-
mation, so that ρs ≃ −∇ ⋅ P. Incorporating the orientational degrees
of freedom to the standard SDFT approach introduced by Dean,43

and after linearizing around a constant, isotropic, and homoge-
neous state, we obtain the general equation for the evolution of the
polarization field as62

∂tP(r, t) = Ds∇
2P − 2Dr

sP +
1
3

p2Cs∇(μs∇
2φ − 2μr

sφ) + Ξ(r, t),
(22)

where Ξ is a Gaussian white noise of zero average and of variance,

⟨Ξk(r, t)Ξl(r
′, t′)⟩ =

2p2Cs

3
δklδ(t − t′)(−Ds∇

2
+ 2Dr

s)δ(r − r′).
(23)

Starting from Eq. (22), we obtain the evolution equations for
the longitudinal and transverse components of the polarization field
in Fourier space as

∂tP̃L(q, t) = −
1

τL(q)
P̃L + ΞL(q, t), (24)

∂tP̃T(q, t) = −
1

τT(q)
P̃T + ΞT(q, t), (25)

where the longitudinal and transverse relaxation rates are

1
τL(q)

=
1 + 3y

τr
s
(1 + q2a2

), (26)

1
τT(q)

=
1
τr

s
(1 + q2a2

). (27)

The dimensionless parameter y is defined in Eq. (11), and we have
introduced the rotational time τr

s = 1/2Dr
s for an isolated dipole

obeying Eq. (19) and a length scale emerging from the ratio of
the translational and diffusion coefficients, a ≡

√
Ds/2Dr

s . The latter
defines a crossover between two regimes: for qa≪ 1, one can con-
sider dipole rotation as sufficiently fast to be averaged, whereas for
qa≫ 1, rotation plays a role in the spatial fluctuations of the polar-
ization. Finally, the noises ΞL(q, t) and ΞT(q, t) are uncorrelated
and have respective variances,

⟨ΞL,i(q, t)ΞL,j(q′, t′)⟩=2
qiqj

q2 DskBTκs(q)2ε0(2π)3δ(q + q′)δ(t − t′)

(28)
and

⟨ΞT,i(q, t)ΞT,j(q
′, t′)⟩ = 2(δij −

qiqj

q2 )DskBTκs(q)2ε0(2π)3

× δ(q + q′)δ(t − t′), (29)

where we have introduced the reciprocal square of a wavenumber-
dependent screening length associated with the polarization charge,

κS(q)2
≡

p2CS

3ε0kBTa2 (1 + q2a2
) =

3y
a2 (1 + q2a2

). (30)

From Eqs. (24) and (25), one gets the expressions for correla-
tion functions for the polarization densities in the infinite space limit
as
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⟨P̃L(q, t) ⋅ P̃L(q′, t′)⟩ =
(2π)3δ(q + q′)p2Cs

3(1 + 3y)
e−∣t−t′ ∣/τL(q), (31)

⟨P̃T(q, t) ⋅ P̃T(q
′, t′)⟩ = 2

(2π)3δ(q + q′)p2Cs

3
e−∣t−t′ ∣/τT(q). (32)

For a system with periodic boundary conditions, the corresponding
expressions are obtained by changing

(2π)3δ(q + q′)→ V δq,−q′ (33)

and Cs = N/V , resulting in intermediate scattering functions [see
Eq. (3)] decaying as a single exponential,

FL(q, t) =
p2

3
1

1 + 3y
e−t/τL(q), (34)

FT(q, t) =
2p2

3
e−t/τT(q). (35)

Note that the characteristic times τL,T(q) introduced in Eqs. (26)
and (27) are thus consistent with the definition of the effective relax-
ation times Eq. (14). The dynamic structure factors [see Eq. (6)] are
obtained from Eqs. (34) and (35), resulting in

SL(q, ω) =
p2

3
1

1 + 3y
2τL(q)

1 + ω2τL(q)2 , (36)

ST(q, ω) =
2p2

3
2τT(q)

1 + ω2τT(q)2 . (37)

Finally, we note that the solution of the Poisson Eq. (20) in
reciprocal space using Fourier transforms corresponds to a Fourier
series for a periodic system in the limit of an infinite period.
Since we did not consider an additional “surface” term (see e.g.,
Refs. 71 and 72), the above-mentioned results correspond to the tin-
foil boundary conditions mentioned in Sec. II B. In particular, the
corresponding permittivity is given by Eq. (12).

C. Relevance of SDFT for polar fluids
As mentioned in Secs. III A and III B, the above-mentioned

analytical results for the polarization fluctuations were obtained after
several approximations. In particular, non-electrostatic interactions
are neglected and the dipoles are considered to interact only via
the mean-field electrostatic potential induced by the other dipoles.
In addition, the coupling between dipoles is considered to be suffi-
ciently small that one can linearize the equations around a constant,
isotropic, and homogeneous state. Here, we discuss the relevance of
these results for the description of polar fluids, before turning to an
explicit comparison with particle-based simulations in Sec. IV.

We first observe that the SDFT predictions for the ISF Eqs. (34)
and (35) and PSD Eqs. (36) and (37) are consistent with the gen-
eral results for the q→ 0 limits of the ratios between longitudinal
and transverse static structure factors [Eq. (13)] and relaxation times
[Eq. (15)], provided that the permittivity of the fluid is equal to

εSDFT
r ≡ 1 + 3y. (38)

Interestingly, Eqs. (34)–(37) show that in the SDFT case, the rela-
tions (13) and (15) also hold for all q. This is likely due to the fact that

the approximations leading to these results neglect short-range cor-
relations and correspond to the hydrodynamic regime q→ 0, ω→ 0.
In turn, Eq. (12) then leads to

gSDFT
K = 1. (39)

As noted below its definition, Eq. (5), the Kirkwood factor is a
measure of the local orientational correlations. The absence of
short-range correlations in SDFT is consistent with the mean-field
treatment of interactions.

The SDFT predictions in Eqs. (34)–(37) depend on only 4
independent physical parameters: the dipole moment p; the dimen-
sionless parameter y, or equivalently the number density Cs for a
given dipole moment and temperature, characterizing the impor-
tance of dipolar couplings; the rotational diffusion coefficient Dr

s
corresponding to the rotational time for an isolated dipole; and
the characteristic length a, or equivalently for a given Dr

s , the
translational diffusion coefficient Ds [see below Eqs. (26) and (27)].

Introducing Eqs. (34) and (35) in Eq. (9) provides the lon-
gitudinal and transverse susceptibilities. Equations (7) and (8)
then yield the corresponding components of the wavelength- and
frequency-dependent permittivity tensor. The SDFT prediction for
the frequency-dependent permittivity is

εSDFT
(ω) = lim

q→0
εSDFT

L (q, ω) = lim
q→0

εSDFT
T (q, ω)

= 1 +
3y

1 − iωτD
, (40)

i.e., of the Debye form, with a Debye relaxation time,

τD = τr
s =

1
2Dr

s
. (41)

This result is consistent with previous results within the Mean
Spherical Approximation,37 in which, in contrast with the present
approach, short-range interactions between solvent particles are
accounted for by setting the pair distribution function to zero
below the radius of the particles. This leads to τD = τT(q→ 0) = εrτL
(q→ 0) since in the present case, τT(q→ 0) = εrτL(q→ 0) = τr

s , i.e.,
the rotational time for an isolated dipole. However, the fact that it
corresponds to the individual relaxation time for rotation is a con-
sequence of the approximations made to model the polarization
fluctuations. Indeed, the dynamics of collective fluctuations are in
general not identical to that of individual dipoles, and a dynamic
Kirkwood factor ġ can be introduced to link the Debye and individ-
ual relaxation times.65 We still need to check that SDFT predicts that
τSDFT

p , defined by Eq. (17), is equal τr
s .

In Ref. 62, we used the experimental permittivity spectrum of
water, which is well described in the low-frequency domain by a sin-
gle Debye mode with τD ≈ 10 ps and a relative permittivity εr = 78.5,
together with Eqs. (40) and (41), to obtain values of Dr

s = 0.05 ps−1

and y. Combining Dr
s with the experimental value of the transla-

tional (self-)diffusion of water at 25 ○C (Ds = 2.3 × 10−9 m2 s−1), we
estimated the lengthscale a ≈ 2.14 Å. Finally, assuming a number
density equal to that of water at the same temperature, Cs = 55M
(0.033 Å−3), then enforces the dipole p = 1.4 D consistent with the
value of y determined from the experimental permittivity. While
this procedure is consistent with the experimental data and results
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in parameters compatible with physical intuition, a better strategy to
assess the range of validity and determine the effective parameters
of the coarse-grained theory (SDFT) is to build the latter from a
microscopic basis. Therefore, in the following, we introduce such a
microscopic reference obtained by simulations of a more realistic
model of a dipolar fluid.

IV. BROWNIAN DYNAMICS SIMULATIONS
A. Stockmayer fluid

In order to obtain “exact” results for the polarization fluc-
tuations of a polar fluid with microscopic dynamics described by
the overdamped Langevin Eqs. (18) and (19) without resorting to
the approximations used in SDFT, it is possible to integrate them
numerically in Brownian Dynamics simulations. A standard model
for polar fluids is the Stockmayer fluid, consisting of point dipoles
pûi, where ûi is the unitary orientation vector of molecule i and
p the dipole moment magnitude of the particle, also interacting
via Lennard-Jones (LJ) potentials to account for short-range repul-
sion and dispersion between particles. The pairwise Stockmayer
potential between particles i and j separated by a distance r is
thus

V(ûi, ûj , r) = ULJ(r) +Udipole(ûi, ûj , r), (42)

where

ULJ(r) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

4ε[(
σ
r
)

12
− (

σ
r
)

6
] if r ≤ rc,

0 if r > rc,
(43)

with σ and ε being the LJ distance and energy, respectively; rc is a
cutoff radius; and

Udipole(ûi, ûj , r) =
p2

4πε0
[

1
r3 (ûi ⋅ ûj) −

3
r5 (ûi ⋅ r)(ûj ⋅ r)]. (44)

In MD simulations of the Stockmayer fluid,8–14 short-range
repulsion between particles results in momentum transfer by col-
lision and momentum conservation results in hydrodynamic effects,
such as long-time tails in the velocity autocorrelation functions.74 In
BD simulations, momentum is not conserved because of the energy
exchange with the thermal bath, so that such effects may not be
captured. The overdamped dynamics of Eqs. (18) and (19) do not
describe short-time features arising from the inertia of particles, but
rather introduce the effect of such high-frequency collective modes
on the dynamics at intermediate and long times via the friction and
stochastic forces acting on each particle.

From the trajectory of Stockmayer particles, we measure the
longitudinal and transverse components of the polarization,

P̃(q, t) =
N

∑
i=1

pûi(t)e−iq⋅ri(t) (45)

for selected wavevectors q compatible with the periodic boundary
conditions, from which we compute the corresponding ISF Eqs. (34)
and (35) and PSD Eqs. (36) and (37). In order to assess the effects of
these physical parameters, we consider several systems with different
dipole moments p and rotational/translational diffusion coefficients

Dr
s and Ds, keeping the number density Cs and temperature T

constant.

B. Simulation details
Table I summarizes the simulation parameters common to all

considered systems. In all cases, we consider a fixed temperature
T = 298 K and number density Cs = 0.033 Å−3 (experimental value
for water at this temperature and a pressure of 1 atm), which corre-
sponds to a reduced density C∗s = Csσ3

≈ 0.9 for the present choice
of LJ diameter. The LJ interaction parameters for the Stockmayer
fluid were taken from Ramirez et al.75 As a reference system, we
consider particles with a dipole moment p = 1.85 D (or in reduced

units p∗ ≡ p
√

β/ε0σ3
= 6.15), corresponding to Ref. 26 (comparing

MD simulations of the Stockmayer fluid with the same LJ para-
meters to molecular density functional theory as a simple model
for water), translational diffusion coefficient Ds = 2.3 × 10−9 m2 s−1

(experimental value for water) and rotational diffusion coefficient
Dr

s = 0.05 ps−1 (deduced from the experimental Debye relaxation
time of water in Ref. 62). This reference system corresponds to
a dipolar coupling parameter [see Eq. (11)] y = 3.84. The corre-
sponding permittivity εr ≈ 140 (see Ref. 26) is much larger than
that of water, reflecting the importance of dipolar couplings in this
system. In order to probe a wide range of regimes, we also consid-
ered systems with dipole moments in the range p ∈ [0.148, 1.85] D,
corresponding to y ∈ [0.025, 3.84].

Short-range LJ and dipole–dipole interactions are computed
using Eqs. (43) and (44), respectively, with a real-space cutoff
rc = 7.56 Å (≈2.5σ). Long-range dipolar interactions are com-
puted using the P3M algorithm76 with a relative root mean square
error in the per-atom force calculations below 10−4. Brownian
dynamics (BD) simulations were performed –using the Large scale
Atomic/Molecular Massively Parallel Simulator77 (LAMMPS) pack-
age, using the Brownian integrator.78,79 Equations (18) and (19) are
integrated using a time step δt = 1 fs, at a temperature T = 298 K.
Each simulation consists of 1 ns of equilibration, followed by 50 ns of
production used for data collection, with observables sampled every
40 fs. As a compromise between computational efficiency and ability
to probe the limit of small wave vectors, we use a non-cubic sim-
ulation box with dimensions Lx × Ly × Lz = 500 × 50 × 50 Å3, with
periodic boundary conditions in all directions. The smallest accessi-
ble wave vector is thus 2π/Lx ≈ 0.0126 Å−1, which corresponds to
qminσ ≈ 0.039. The results presented in the following sections are
averaged over two independent initial conditions, and the uncer-
tainties are reported as the standard error computed across the inde-
pendent trajectories. See the Appendix for additional computational
details on the computation of the dynamic structure factor.

TABLE I. Parameters common to all simulations of the Stockmayer fluid. See the text
for the values of the dipole, rotational, and translational diffusion coefficients.

Symbol Definition Value

σ LJ diameter 3.024 Å
ε LJ energy 0.4412 kcal mol−1

T Temperature 298 K
Cs Number density 0.033 Å−3
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V. RESULTS AND DISCUSSION
A. Static structure factors and relaxation times

We first compute the longitudinal and static structure fac-
tors, whose definition is recalled: SL,T(q) ≡ 1

N ⟨∣P̃L,T(q)∣2⟩. Their
q→ 0 limits (calculated at the smallest considered wavevector
qminσ ≈ 0.039) are plotted, respectively, in Figs. 1(a) and 1(b), as
a function of the reduced dipole moment p∗. The BD results for
the Stockmayer fluid (green squares) are compared to the predic-
tion from SDFT [i.e., q→ 0 limit of Eqs. (34) and (35), blue circles],
obtained by neglecting non-electrostatic interactions and treating
electrostatic couplings at the mean-field level. While SDFT predic-
tions for the q→ 0 limit of the longitudinal polarization structure
factor, SL(q→ 0) = p2

/3(1 + 3y), are in excellent agreement with
the BD results over the whole dipole range considered, those for the
transverse one ST(q→ 0) = p2

/3, deviate from the BD results except
for small dipoles.

Identical conclusions can be drawn on the q→ 0 limit of the
corresponding relaxation times. The latter are determined in BD
simulations by fitting the dynamic structure factor SL,T(qmin, ω) as
SL,T(qmin) × 2τL,T(qmin)/(1 + ω2τL,T(qmin)

2
), where the value of the

static structure factor, discussed above, is not considered as a fit-
ting parameter (see the Appendix for the actual form taking into
account the finite sampling frequency in BD simulations). The BD
results for the longitudinal and transverse relaxation times are indi-
cated by the green symbols shown in Figs. 1(c) and 1(d), together
with the corresponding SDFT predictions τL(q→ 0) = τr

s/(1 + 3y)
and τL(q→ 0) = τr

s [see Eqs. (26) and (27), blue symbols]. As for
the static structure factor, while SDFT predictions for the q→ 0
limit of the longitudinal relaxation time are in excellent agreement
with the BD results over the whole dipole range considered, those

for the transverse one deviate from the BD results except for small
dipoles.

B. Kirkwood factor and permittivity
Since the above-mentioned predictions were obtained by

neglecting non-electrostatic interactions and treating electrostatic
couplings at the mean-field level, we can anticipate that at least
some of their shortcomings are due to the fact that short-range
correlations are not properly taken into account. Such correlations
between dipole are usually characterized by the Kirkwood factor
gK defined in Eq. (5) and shown as a function of the reduced
dipole p∗ in Fig. 2. Starting from the expected gK = 1 (no correla-
tions) in the limit p∗ → 0, it grows significantly over the considered
range of dipoles. As shown in the inset of Fig. 2, these correla-
tions have a direct impact on the static permittivity εr = 1 + 3ygK
[see Eq. (12)], which rises up to εr = 146, which is close to the
value reported in Ref. 26 for similar simulation parameters as the
ones used in this study and much larger than the value predicted
by assuming gK = 1 [see Eq. (38), also indicated by the dashed
line].

Overall, these observations support the claim that the limita-
tions of SDFT in predicting the transverse static structure factor
and correlation time are related to the neglect of short-range cor-
relations. The effect of such correlations is less pronounced on the
longitudinal static structure factor. This can be understood by tak-
ing the limit q→ 0 and ω→ 0 of Eq. (9), which yields χL(q = 0, ω)
= Cs

ε0kBT SL(q = 0) = 1 − 1
εr

, where the second equality originates
from Eq. (7). Using the relation between gK and εr Eq. (12),
and with a similar reasoning for the transverse component, we
get

FIG. 1. Longitudinal (a) and transverse (b) polarization den-
sity structure factors and longitudinal (c) and transverse
(d) relaxation times, calculated at the smallest considered
wavevector qminσ ≈ 0.039, as a function of the reduced

dipole moment p∗ ≡ p
√

β/ε0σ3. The structure factors and
relaxation times are shown normalized by p2 and the rota-
tional diffusion time of a single dipole, τr

s = 1/2D r
s , respec-

tively. The green squares indicate the results from Brownian
dynamics simulations of the Stockmayer fluid, while the
blue circles represent the SDFT predictions. “SDFT” and
“effective SDFT” correspond to the predictions obtained
without and with considering the effect of dipolar correla-
tions, respectively. In other words, the red stars indicate
the SDFT predictions using effective parameters computed
via Eqs. (47) and (49)–(51), using the Kirkwood factor gK
measured in BD simulations.
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FIG. 2. Kirkwood factor gK as a function of reduced dipole moment p∗, obtained
from BD simulations [see Eq. (5)]. The horizontal dashed line corresponds to
gK = 1. The inset shows the corresponding permittivity computed by Eq. (12) (full
symbols), and the prediction assuming gK = 1 (empty symbols).

SL(q→ 0) =
ST(q→ 0)

εr
=

p2gK

3εr
=

p2gK

3(1 + 3ygK)
. (46)

While both components are well described by SDFT Eqs. (34) and
(35) when gK ≈ 1 (i.e., sufficiently small p∗), for gK ≫ 1, there
is a compensation between the numerator and denominator for
SL(q) ≈ p2

/9y (as correctly predicted by SDFT), whereas no such
compensation occurs for ST(q). A similar compensation might be
at play to rationalize the fact that the longitudinal relaxation time
is well reproduced even when dipolar correlations are important,
unlike the transverse one. However, to the best of our knowledge,
there are no exact relations analogous to Eq. (46) for the relax-
ation times (nevertheless, see the discussion in the following of the
approximate link between collective and individual dynamics, which
would provide a similar argument).

C. Accounting for short-range correlations:
Effective SDFT

It should be no surprise that the approximations leading to
the analytical predictions of Sec. III B fail to capture short-range
effects. In fact, one should expect these predictions to be limited to
small wavevectors and frequencies. In the following, we show how
to introduce the effect of short-range correlations into the above-
mentioned theory via effective quantities (indicated by a tilde), in
order to describe polarization fluctuations in the hydrodynamic
regime q→ 0, ω→ 0 without introducing additional complexity to
the model.

To that end, we first note that in order to correctly describe the
static correlations ST(q→ 0) by the SDFT prediction, which corre-
sponds to gSDFT

K = 1 [see Eq. (39)], with an effective dipole p̃, Eq. (46)
implies p̃ 2

≡ p2gK , i.e.,

p̃ ≡ p
√

gK = pg1/2
K , (47)

where gK is the actual Kirkwood factor of the Stockmayer fluid. Pre-
vious studies have already introduced an effective dipole to account

for the effect of short-range correlations on the electrostatic poten-
tial or the pair distribution functions at long distance (see e.g.,
Refs. 80–82), generally leading to an increase in the “bare” dipole
by a factor gK (the effective interaction between two distant dipoles
being further screened by a factor εr). In the present case, the square
root can be understood by considering the fact that the description
with effective dipoles aims at reproducing collective fluctuations and
not the actual structure around a given dipole. In order to also cor-
rectly describe SL(q→ 0), one should also map the permittivity at
the microscopic and effective levels of description, i.e., εr = 1 + 3ygK
= 1 + 3ỹ, leading to

ỹ ≡ ygK , (48)

which together with Eq. (47) implies

C̃s ≡ Cs = Csg0
K. (49)

Kournopoulos et al. also recently proposed a scheme to describe
the static dielectric constant of dipolar fluids from molecular
considerations, by introducing a numerical scaling factor in the
Kirkwood–Onsager relation to improve the agreement between a
mean-field theory and the static permittivity measured in MD sim-
ulations of the Stockmayer fluid.83 Their augmented mean-field the-
ory for the static dielectric constant of dipolar hard spheres showed
better quantitative agreement with the simulation results when the
product ygK was scaled by a factor of 1.3. In contrast, here we
introduce a mapping between the two levels of theory (microscopic
↦ coarse-grained) using the Kirkwood g-factor obtained from sim-
ulations, in order to account for the orientational correlations in
numerical applications.

Turning now to dynamical properties, in order to correctly
describe the relaxation times τL,T(q→ 0) [see Eq. (14)], one should
consider the effect of short-range correlations on the collective
dynamics of dipoles. This issue has been investigated in particular by
Kivelson and Madden,65,84,85 who showed that by neglecting some
dynamical correlations, one obtains a particularly simple relation
between the Debye relaxation time τD = τT(q→ 0) = εrτL(q→ 0)
and the correlation time for the reorientation dynamics of a single
dipole (in the presence of the others), τ1, namely, τD = τ1 gK . The
SDFT result Eq. (41) suggests that one should rescale the individ-
ual rotational time τ̃r

s ≡ τr
s gK , or equivalently the rotational diffusion

time,

D̃r
s ≡ Dr

sg−1
K . (50)

Finally, in order to consistently describe the q−dependence of the
relaxation times with SDFT, one should keep a unchanged [see
Eqs. (26) and (27)] under rescaling of the rotational diffusion coef-
ficient. This implies the same rescaling of the translational diffusion
coefficient,

D̃s ≡ Dsg−1
K . (51)

In the following, we will refer to “effective SDFT” when using
the SDFT predictions with the effective dipole p̃, concentration
C̃s, rotational diffusion coefficient D̃r

s , and translational diffusion
coefficient D̃s, obtained by rescaling the corresponding bare quan-
tities with the Kirkwood factor determined from simulations using
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the appropriate exponents presented in Eqs. (47) and (49)–(51).
To some extent, this effective way to incorporate dipolar corre-
lations through rescaling of the relevant parameters of the model
can be seen as analogous to the dressed ion theory for electrolytes,
which consists in a self-consistent renormalization of the charge of
ions in order to simplify the analytical description of their static
correlations.86,87

The predictions of this effective DFT for the static structure
factors and relaxation times, also shown in Fig. 1, are in excellent
agreement with the BD results. This suggests that incorporating
the short-range correlations into SDFT by appropriately rescaling
the relevant parameters is sufficient to capture these key observable
properties in the hydrodynamic regime q→ 0, ω→ 0. Before turning
to a more stringent test of effective SDFT with the dynamic structure
factors in Section V E, we first consider the static structure factor
beyond the q→ 0 limit.

D. q -dependence of the static structure factors
The SDFT results obtained by neglecting short-range correla-

tions and treating electrostatic interactions at the mean-field level
predict that the static polarization structure factors [corresponding

FIG. 3. Longitudinal (a) and transverse (b) polarization structure factors [see
Eq. (4)], normalized by p2 and as a function of reduced wave number qσ, for
Stockmayer fluids with reduced density C∗s = Csσ3

= 0.9 and various reduced

dipoles p∗ ≡ p
√

β/ε0σ3. The dashed lines in panels (a) and (b) correspond to
SL(q)/p2

= gK/3εr and ST(q)/p2
= gK/3(1 + q2ξ2

T), with gK and εr from Fig. 2,
and ξT being a correlation length used as a fitting parameter. The colors encode
dipole moments in the range p∗ ∈ [0.5, 6.15] as indicated by the colorbar.

to t = 0 in Eqs. (34) and (35)] are independent of the wavevector q.
Figure 3 shows that the BD results for a wide range of dipoles gen-
erally satisfy this prediction for wave vectors qσ ≲ 1, i.e., down to
wavelengths comparable with the particle size. In addition, the mag-
nitude of the two components in the q→ 0 limit satisfy the exact
results in Eq. (46), with the Kirkwood factors gK and permittivity εr
reported in Fig. 2.

However, we note that for the largest considered dipoles, the
transverse components do depend on the wave vector, in contrast
with the simple SDFT prediction. The BD results in that case are
well described by ST(q) = p2gK/3(1 + q2ξ2

T), where ξT is a corre-
lation length used as a fitting parameter. The resulting values are
ξT ≈ 0.603σ and ξT ≈ 1.28σ for p∗ = 5.53 and 6.15, respectively.
These values are comparable with the particle size, consistently with
Kirkwood’s point that the dipolar correlations remain relatively
short-ranged (see, e.g., Refs. 63, 65, and 88). In order to capture
these correlations, which are also reflected in the Kirkwood factor,
one should go beyond the assumptions leading to the simple analyt-
ical results of the present work, namely, the dipolar approximation
and the omission of any short-range steric repulsion in the SDFT
description.

FIG. 4. Longitudinal (a) and transverse (b) dynamic polarization structure factors
[see Eq. (6)], calculated at the smallest considered wave vector qminσ ≈ 0.039,
for Stockmayer fluids with reduced density C∗s = Csσ3

= 0.9 and various reduced

dipoles p∗ ≡ p
√

β/ε0σ3 indicated by the color bar. The results are normalized
by p2τr

s and expressed as a function of reduced frequency ωτr
s. The shaded

regions denote the uncertainty estimates corresponding to one standard error
for the BD results. The dashed lines indicate the effective SDFT predictions, i.e.,
Equations (36) and (37) with effective parameters [see Eqs. (47) and (49)–(51)].
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FIG. 5. Effect of the translational and
rotational diffusion coefficients on the
longitudinal [(a) and (c)] and transverse
[(b) and (d)] dynamic polarization
structure factors [see Eq. (6)], calculated
at qminσ ≈ 0.5, for the Stockmayer fluid
with reduced density C∗s = Csσ3

= 0.9
and reduced dipoles p∗ = 6.15. Start-
ing from a reference system (blue)
with Ds = 2.3 × 10−9 m2 s−1 and
Dr

s = 0.05 ps−1, we consider the effect
of Dr

s [(a) and (b)] and Ds [(c) and (d)]
by dividing (red) or multiplying (green)
them by a factor of 4. The x and y
axes of all plots are normalized by
1/τr

s and p2τr
s, respectively, with the

rotational diffusion time of the reference
system. The shaded regions denote the
uncertainty estimates corresponding to
one standard error for the BD results.
The dashed lines indicate the effective
SDFT predictions, i.e., Equations (36)
and (37) with effective parameters [see
Eqs. (47) and (49)–(51)].

E. Dynamic polarization structure factors
We finally turn to the polarization dynamics, quantified by

the dynamic structure factors SL,T(q, ω). The BD simulation results
for the smallest considered wave vector qminσ ≈ 0.039 are shown
in Fig. 4. They are very well described by the effect SDFT predic-
tions, i.e., Equations (36) and (37) with effective parameters [see
Eqs. (47) and (49)–(51)], also indicated by the dashed lines, over the
whole range of considered frequencies. The plateau deviating from
the ω−2 scaling at the largest frequencies is due to the finite sam-
pling frequency in simulations and can be captured analytically by
considering the discrete Fourier transform (see the Appendix) of the
ISF Eqs. (34) and (35). Overall, the results of Fig. 4 show that SL,T
(q→ 0, ω) for the overdamped Stockmayer fluid correspond to
exponentially decaying intermediate scattering functions of the
polarization at all times, as predicted by SDFT. Furthermore, they
confirm that the simple rescaling of the physical parameters by the
Kirkwood factor with appropriate exponents is sufficient to capture
the effect of short-range correlations on the dynamical polarization
fluctuations. The SDFT approach, therefore, extends well beyond the
static limit and correctly captures the behavior of the dynamics of
the system for a large range of frequencies, when the correlations
between dipoles are accounted for in an effective way.

Finally, we investigate the ability of effective SDFT to capture
the BD results beyond the q→ 0 limit, as well as the effect of the
translational and rotational diffusion coefficients on the dynam-
ics of the polarization fluctuations. Figure 5 shows SL,T(q, ω) for a
wave vector qσ = 0.5 corresponding to distances comparable with
a few particle diameters, for the Stockmayer fluid with the largest
considered dipole (p = 1.85 D, i.e., p∗ = 6.15). In this system, short-
range correlations are significant, with a Kirkwood factor gK ≈ 12.6

and a correlation length ξT ≈ 1.28σ, so that the static structure fac-
tor ST(q = 0.5σ−1

) differs significantly from ST(q→ 0) (see Fig. 3).
Starting from a reference system with Ds = 2.3 × 10−9 m2 s−1 and
Dr

s = 0.05 ps−1, we consider the effect of Dr
s and Ds by multiplying

or dividing them by a factor of 4. The BD results show that, for the
considered wave vector, the effect of Dr

s is significant, while that of
Ds is very limited, as expected in the small q regime (in the reference
case, a ≈ 0.5σ, and in the modified ones a ≈ 0.25σ or σ, leading to
qa < 1 in all cases). Out of this regime, Ds might also play a role in the
polarization dynamics.28 Increasing Dr

s results in a decrease in the
characteristic time (larger crossover frequency) and in the plateau at
low frequency (note that the frequency and dynamic structure fac-
tors shown in Fig. 5 are adimensionalized using τr

s of the reference
system). Importantly, Fig. 5 shows that the BD results and the effects
of Dr

s and Ds are well captured by effective SDFT even for this case
beyond the q→ 0 limit of Fig. 4.

VI. CONCLUSION AND PERSPECTIVES
In this work, we developed and validated a stochastic density

functional theory (SDFT) framework to describe the polarization
dynamics of polar fluids, using the Stockmayer fluid as a prototypi-
cal model. Analytical expressions were derived for the intermediate
scattering functions and dynamic structure factors of longitudi-
nal and transverse polarization components under linearized SDFT
assumptions. These predictions were then systematically compared
to Brownian dynamics simulations, which served as a microscopic
reference.

Our results demonstrate that SDFT, which neglects short-range
correlations and treats dipole–dipole interactions at the mean-field
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level in its current form, provides accurate predictions for the
longitudinal polarization fluctuations. However, it underestimates
the amplitude and relaxation time of transverse fluctuations, espe-
cially for fluids with strong dipolar interactions. We show that
this discrepancy arises from the neglect of local orientational cor-
relations, which can be effectively captured by introducing the
Kirkwood factor into a modified SDFT. This effective theory, based
on parameter rescaling guided by simulation data, achieves quan-
titative agreement with both static and dynamic properties in the
long-wavelength limit.

Beyond validating the theoretical framework, this work pro-
vides practical guidelines for the use of SDFT to model real
polar solvents and their role in complex environments, and sev-
eral future research directions. (i) In particular, the present SDFT
theory sets the stage for investigating fluctuation-induced phenom-
ena in electrolytes,89–92 where polar solvent dynamics could play
a critical role, and has been overlooked so far. This could involve
the integration of SDFT description of solvent into the fluctuat-
ing hydrodynamics model for electrolyte systems,46,47 thereby pro-
viding a more unified theoretical framework that simultaneously
accounts for the hydrodynamic interactions and solvent polariza-
tion. (ii) Furthermore, the model can be extended to account for
spatial confinement—an essential factor in many nanoscale systems,
including ionic channels, membranes, and porous materials. Previ-
ous studies have already shown that confinement induces anisotropy
in the static dielectric properties of polar fluids.93–95 Further investi-
gation into the confinement effects on the polarization correlations
and collective relaxation dynamics could substantially enhance our
understanding of nanoscale transport processes. To conclude, we
assert that by providing a consistent and computationally tractable
approach, SDFT thus offers a promising path toward bridging
molecular–scale interactions with mesoscopic behavior in a wide
range of soft and electrochemical systems.
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APPENDIX: ADDITIONAL COMPUTATIONAL DETAILS

The partial Fourier components of the longitudinal and trans-
verse polarization densities, P̃L,T(q, t), are sampled every 40 fs
during the production run of the simulation, for selected wave
vectors in the range qσ ∈ [0.039, 11], satisfying q = m2π/Lx with
m ∈ N to ensure compatibility with periodic boundary conditions.
The dynamic polarization structure factor is computed for each wave
vector using the fast Fourier transform algorithm, applied over n
blocks of the time series assumed to be statistically independent
(n = 50 corresponding to 1 ns for the longitudinal polarization den-
sity, n = 10 corresponding to 5 ns for the transverse one). The
results are further averaged over the two independent initial con-
ditions, with uncertainties estimated as the standard error across the
independent trajectories.

To incorporate the effect of finite sampling frequency into the
analytical predictions, we express the dynamic polarization structure
factors using the discrete Fourier transform of Eqs. (34) and (35).
Hence, Eqs. (36) and (37) become

SL,T(q, ωk) =
2SL,T(q)
τL,T(q)

∣
1

1 − r(ωk)
∣

2

(Δt)2, (A1)

where for each discrete frequency ωk = 2πk/NbΔt; with Δt = 40δt
the interval between successive samples, Nb the total number of
samples in a block, and k ∈ {0, 1, 2, . . . , Nb}, we introduced

r(ωk) = exp [−(
Δt

τL,T
+ iωkΔt)]. (A2)

REFERENCES
1C. Gray and K. Gubbins, Theory of Molecular Liquids (Oxford University Press,
1984).
2P. Rossky, “The structure of polar molecular liquids,” Annu. Rev. Phys. Chem.
36, 321 (1985).
3J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, 4th ed. (Elsevier,
Amsterdam, 2013).
4G. Jeanmairet, B. Rotenberg, and M. Salanne, “Microscopic simulations of
electrochemical double-layer capacitors,” Chem. Rev. 122, 10860–10898 (2022).
5B. Bagchi and A. Chandra, “Collective orientational relaxation in dense dipolar
liquids,” Adv. Chem. Phys. 80, 1–126 (1991).
6N. Nandi, K. Bhattacharyya, and B. Bagchi, “Dielectric relaxation and solvation
dynamics of water in complex chemical and biological systems,” Chem. Rev. 100,
2013–2046 (2000).
7B. Bagchi and B. Jana, “Solvation dynamics in dipolar liquids,” Chem. Soc. Rev.
39, 1936 (2010).
8E. L. Pollock and B. J. Alder, “Static dielectric properties of Stockmayer fluids,”
Physica A 102, 1 (1980).
9M. Neumann, “Dipole moment fluctuation formulas in computer simulations of
polar systems,” Mol. Phys. 50, 841–858 (1983).

J. Chem. Phys. 163, 124107 (2025); doi: 10.1063/5.0292306 163, 124107-11

Published under an exclusive license by AIP Publishing

 22 Septem
ber 2025 12:00:30

https://pubs.aip.org/aip/jcp
https://doi.org/10.5281/zenodo.17061930
https://doi.org/10.1146/annurev.physchem.36.1.321
https://doi.org/10.1021/acs.chemrev.1c00925
https://doi.org/10.1002/9780470141298.ch1
https://doi.org/10.1021/cr980127v
https://doi.org/10.1039/b902048a
https://doi.org/10.1016/0378-4371(80)90058-8
https://doi.org/10.1080/00268978300102721


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

10C. Hesse-Bezot, G. Bossis, and C. Brot, “New molecular dynamics simulation of
a 3D fluid of Stockmayer and modified Stockmayer particles,” J. Chem. Phys. 80,
3399–3407 (1984).
11M. Neumann, “Computer simulation and the dielectric constant at finite
wavelength,” Mol. Phys. 57, 97–121 (1986).
12M. Neumann, “Dielectric relaxation in water. Computer simulations with the
TIP4P potential,” J. Chem. Phys. 85, 1567–1580 (1986).
13P. A. Bopp, A. A. Kornyshev, and G. Sutmann, “Frequency and wave-vector
dependent dielectric function of water: Collective modes and relaxation spectra,”
J. Chem. Phys. 109, 1939–1958 (1998).
14J. Bartke and R. Hentschke, “Phase behavior of the Stockmayer fluid via
molecular dynamics simulation,” Phys. Rev. E 75, 061503 (2007).
15F. H. Stillinger and A. Rahman, “Improved simulation of liquid water by
molecular dynamics,” J. Chem. Phys. 60, 1545–1557 (1974).
16H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, “The missing term in
effective pair potentials,” J. Phys. Chem. 91, 6269–6271 (1987).
17M. W. Mahoney and W. L. Jorgensen, “A five-site model for liquid water and the
reproduction of the density anomaly by rigid, nonpolarizable potential functions,”
J. Chem. Phys. 112, 8910–8922 (2000).
18S. W. Rick, “A reoptimization of the five-site water potential (TIP5P) for use
with Ewald sums,” J. Chem. Phys. 120, 6085–6093 (2004).
19J. L. F. Abascal and C. Vega, “A general purpose model for the condensed phases
of water: TIP4P/2005,” J. Chem. Phys. 123, 234505 (2005).
20H. Berthoumieux, “Gaussian field model for polar fluids as a function of density
and polarization: Toward a model for water,” J. Chem. Phys. 148, 104504 (2018).
21H. Berthoumieux and F. Paillusson, “Dielectric response in the vicinity of an ion:
A nonlocal and nonlinear model of the dielectric properties of water,” J. Chem.
Phys. 150, 094507 (2019).
22H. Berthoumieux and A. C. Maggs, “Fluctuation-induced forces governed by the
dielectric properties of water—A contribution to the hydrophobic interaction,”
J. Chem. Phys. 143, 104501 (2015).
23P. Frodl and S. Dietrich, “Bulk and interfacial properties of polar and molecular
fluids,” Phys. Rev. A 45, 7330 (1992).
24P. Frodl and S. Dietrich, “Thermal and structural properties of the liquid-vapor
interface in dipolar fluids,” Phys. Rev. E 48, 3741 (1993).
25G. Jeanmairet, M. Levesque, R. Vuilleumier, and D. Borgis, “Molecular density
functional theory of water,” J. Phys. Chem. Lett. 4, 619–624 (2013).
26G. Jeanmairet, N. Levy, M. Levesque, and D. Borgis, “Molecular density func-
tional theory of water including density–polarization coupling,” J. Phys.: Condens.
Matter 28, 244005 (2016).
27B. Bagchi and A. Chandra, “Dynamics of polar solvation: Route to single expo-
nential relaxation via translational diffusion,” Proc. Indian Acad. Sci. (Chem. Sci.)
100, 353–357 (1988).
28A. Chandra and B. Bagchi, “The role of translational diffusion in the
polarization relaxation in dense polar liquids,” Chem. Phys. Lett. 151, 47 (1988).
29A. Chandra and B. Bagchi, “A molecular theory of collective orientational
relaxation in pure and binary dipolar liquids,” J. Chem. Phys. 91, 1829–1842
(1989).
30D. F. Calef and P. G. Wolynes, “Smoluchowski–Vlasov theory of charge
solvation dynamics,” J. Chem. Phys. 78, 4145–4153 (1983).
31A. Chandra and B. Bagchi, “Molecular theory of solvation and solvation
dynamics of a classical ion in a dipolar liquid,” J. Phys. Chem. 93, 6996–7003
(1989).
32G. V. Vijayadamodar, A. Chandra, and B. Bagchi, “Effects of translational dif-
fusion on dielectric friction in a dipolar liquid,” Chem. Phys. Lett. 161, 413–419
(1989).
33G. V. Vijayadamodar and B. Bagchi, “Electrostriction: A density functional
theory,” J. Chem. Phys. 95, 1168–1174 (1991).
34S. Roy and B. Bagchi, “Ultrafast underdamped solvation: Agreement between
computer simulation and various theories of solvation dynamics,” J. Chem. Phys.
99, 1310–1319 (1993).
35S. Roy and B. Bagchi, “Solvation dynamics in liquid water. A novel interplay
between librational and diffusive modes,” J. Chem. Phys. 99, 9938–9943 (1993).
36M. te Vrugt, H. Löwen, and R. Wittkowski, “Classical dynamical density
functional theory: From fundamentals to applications,” Adv. Phys. 69, 121 (2020).

37A. Chandra and B. Bagchi, “Relationship between microscopic and macroscopic
orientational relaxation times in polar liquids,” J. Phys. Chem. 94, 3152–3156
(1990).
38T. Hoang Ngoc Minh, J. Kim, G. Pireddu, I. Chubak, S. Nair, and B. Rotenberg,
“Electrical noise in electrolytes: A theoretical perspective,” Faraday Discuss. 246,
198–224 (2023).
39A. D. Young, A. L. Thorneywork, and S. Marbach, “Decoding noise in
nanofluidic systems: Adsorption versus diffusion signatures in power spectra,”
arXiv:2506.23867 (2025).
40T. Munakata, “A dynamical extension of the desity functional theory,” J. Phys.
Soc. Jpn. 58, 2434–2438 (1989).
41K. Kawasaki, “Stochastic model of slow dynamics in supercooled liquids and
dense colloidal suspensions,” Physica A 208, 35–64 (1994).
42K. Kawasaki, “Microscopic analyses of the dynamical density functional
equation of dense fluids,” J. Stat. Phys. 93, 527–546 (1998).
43D. S. Dean, “Langevin equation for the density of a system of interacting
Langevin processes,” J. Phys. A: Math. Gen. 29, L613 (1996).
44P. Illien, “The Dean-Kawasaki equation and stochastic density functional
theory,” Rep. Prog. Phys. 88, 086601 (2025).
45V. Démery and D. S. Dean, “The conductivity of strong electrolytes from
stochastic density functional theory,” J. Stat. Mech. 2016, 023106.
46J.-P. Péraud, A. Nonaka, A. Chaudhri, J. B. Bell, A. Donev, and A. L. Garcia,
“Low Mach number fluctuating hydrodynamics for electrolytes,” Phys. Rev. Fluids
1, 074103 (2016).
47A. Donev, A. L. Garcia, J.-P. Péraud, A. J. Nonaka, and J. B. Bell, “Fluctuating
hydrodynamics and Debye-Hückel-Onsager theory for electrolytes,” Curr. Opin.
Electrochem. 13, 1–10 (2019).
48Y. Avni, D. Andelman, and H. Orland, “Conductance of concentrated elec-
trolytes: Multivalency and the Wien effect,” J. Chem. Phys. 157, 154502
(2022).
49Y. Avni, R. M. Adar, D. Andelman, and H. Orland, “Conductivity of
concentrated electrolytes,” Phys. Rev. Lett. 128, 098002 (2022).
50O. Bernard, M. Jardat, B. Rotenberg, and P. Illien, “On analytical theories for
conductivity and self-diffusion in concentrated electrolytes,” J. Chem. Phys. 159,
164105 (2023).
51H. Bonneau, V. Démery, and E. Raphaël, “Temporal response of the conductiv-
ity of electrolytes,” J. Stat. Mech. 2023, 073205.
52H. Berthoumieux, V. Démery, and A. C. Maggs, “Nonlinear conductivity of
aqueous electrolytes: Beyond the first Wien effect,” J. Chem. Phys. 161, 184504
(2024).
53H. Frusawa, “Transverse density fluctuations around the ground state distribu-
tion of counterions near one charged plate: Stochastic density functional view,”
Entropy 22, 34 (2019).
54H. Frusawa, “Electric-field-induced oscillations in ionic fluids: A unified formu-
lation of modified Poisson–Nernst–Planck models and its relevance to correlation
function analysis,” Soft Matter 18, 4280–4304 (2022).
55H. Wada, “Electroviscous effects of simple electrolytes under shear,” J. Stat.
Mech.: Theory Exp. 2005, P01001.
56R. Okamoto, “Fluctuating hydrodynamics of dilute electrolyte solutions: Sys-
tematic perturbation calculation of effective transport coefficients governing
large-scale dynamics,” J. Stat. Mech.: Theory Exp. 2022, 093203.
57P. Robin, “Correlation-induced viscous dissipation in concentrated
electrolytes,” J. Chem. Phys. 160, 064503 (2024).
58L. F. Cugliandolo, P.-M. Déjardin, G. S. Lozano, and F. Van Wijland, “Stochastic
dynamics of collective modes for Brownian dipoles,” Phys. Rev. E 91, 032139
(2015).
59P. M. Déjardin, Y. Cornaton, P. Ghesquière, C. Caliot, and R. Brouzet,
“Calculation of the orientational linear and nonlinear correlation factors of polar
liquids from the rotational Dean-Kawasaki equation,” J. Chem. Phys. 148, 044504
(2018).
60P.-M. Déjardin, S. V. Titov, and Y. Cornaton, “Linear complex susceptibility of
long-range interacting dipoles with thermal agitation and weak external ac fields,”
Phys. Rev. B 99, 024304 (2019).
61P.-M. Déjardin and Y. Cornaton, “Linear complex permittivity of isotropic polar
fluids,” J. Phys.: Conf. Ser. 1322, 012039 (2019).

J. Chem. Phys. 163, 124107 (2025); doi: 10.1063/5.0292306 163, 124107-12

Published under an exclusive license by AIP Publishing

 22 Septem
ber 2025 12:00:30

https://pubs.aip.org/aip/jcp
https://doi.org/10.1063/1.447095
https://doi.org/10.1080/00268978600100081
https://doi.org/10.1063/1.451198
https://doi.org/10.1063/1.476884
https://doi.org/10.1103/physreve.75.061503
https://doi.org/10.1063/1.1681229
https://doi.org/10.1021/j100308a038
https://doi.org/10.1063/1.481505
https://doi.org/10.1063/1.1652434
https://doi.org/10.1063/1.2121687
https://doi.org/10.1063/1.5012828
https://doi.org/10.1063/1.5080183
https://doi.org/10.1063/1.5080183
https://doi.org/10.1063/1.4928509
https://doi.org/10.1103/physreva.45.7330
https://doi.org/10.1103/physreve.48.3741
https://doi.org/10.1021/jz301956b
https://doi.org/10.1088/0953-8984/28/24/244005
https://doi.org/10.1088/0953-8984/28/24/244005
https://doi.org/10.1007/bf02840546
https://doi.org/10.1016/0009-2614(88)80067-8
https://doi.org/10.1063/1.457088
https://doi.org/10.1063/1.445091
https://doi.org/10.1021/j100356a023
https://doi.org/10.1016/0009-2614(89)85108-5
https://doi.org/10.1063/1.461147
https://doi.org/10.1063/1.465375
https://doi.org/10.1063/1.465392
https://doi.org/10.1080/00018732.2020.1854965
https://doi.org/10.1021/j100370a074
https://doi.org/10.1039/d3fd00026e
https://arxiv.org/abs/2506.23867
https://doi.org/10.1143/jpsj.58.2434
https://doi.org/10.1143/jpsj.58.2434
https://doi.org/10.1016/0378-4371(94)90533-9
https://doi.org/10.1023/b:joss.0000033240.66359.6c
https://doi.org/10.1088/0305-4470/29/24/001
https://doi.org/10.1088/1361-6633/adee2e
https://doi.org/10.1088/1742-5468/2016/02/023106
https://doi.org/10.1103/physrevfluids.1.074103
https://doi.org/10.1016/j.coelec.2018.09.004
https://doi.org/10.1016/j.coelec.2018.09.004
https://doi.org/10.1063/5.0111645
https://doi.org/10.1103/physrevlett.128.098002
https://doi.org/10.1063/5.0165533
https://doi.org/10.1088/1742-5468/acdced
https://doi.org/10.1063/5.0226773
https://doi.org/10.3390/e22010034
https://doi.org/10.1039/d1sm01811f
https://doi.org/10.1088/1742-5468/2005/01/p01001
https://doi.org/10.1088/1742-5468/2005/01/p01001
https://doi.org/10.1088/1742-5468/ac8c8d
https://doi.org/10.1063/5.0188215
https://doi.org/10.1103/physreve.91.032139
https://doi.org/10.1063/1.5010295
https://doi.org/10.1103/physrevb.99.024304
https://doi.org/10.1088/1742-6596/1322/1/012039


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

62P. Illien, A. Carof, and B. Rotenberg, “Stochastic density functional theory for
ions in a polar solvent,” Phys. Rev. Lett. 133, 268002 (2024).
63J. G. Kirkwood, “The dielectric polarization of polar liquids,” J. Chem. Phys. 7,
911–919 (1939).
64R. L. Fulton, “On the theory of dielectric relaxation,” Mol. Phys. 29, 405–413
(1975).
65P. Madden and D. Kivelson, “A consistent molecular treatment of dielectric
phenomena,” in Advances in Chemical Physics (John Wiley & Sons, Inc., 1984),
pp. 467–566.
66B. U. Felderhof, “Fluctuation theorems for dielectrics with periodic boundary
conditions,” Physica A 101, 275–282 (1980).
67E. L. Pollock and B. J. Alder, “Frequency-dependent dielectric response in polar
liquids,” Phys. Rev. Lett. 46, 950–953 (1981).
68J. M. Caillol, “The dielectric constant and the conductivity of an electrolyte
solution at finite wave-lengths and frequencies,” Europhys. Lett. 4, 159–166
(1987).
69P. V. Giaquinta, M. Parrinello, and M. P. Tosi, “Collective dynamics of charge
fluctuations in ionic conductors,” Physica A 92, 185–197 (1978).
70B. M. Ladanyi and B.-C. Perng, “Computer simulation of wavevector-dependent
dielectric properties of polar and nondipolar liquids,” AIP Conf. Proc. 492,
250–264 (1999).
71S. W. de Leeuw, J. W. Perram, E. R. Smith, and J. S. Rowlinson,
“Simulation of electrostatic systems in periodic boundary conditions. I. Lat-
tice sums and dielectric constants,” Proc. R. Soc. London, Ser. A 373, 27–56
(1980).
72J. M. Caillol, “Asymptotic behavior of the pair-correlation function of a polar
liquid,” J. Chem. Phys. 96, 7039–7053 (1992).
73D. Kivelson and H. Friedman, “Longitudinal dielectric relaxation,” J. Phys.
Chem. 93, 7026–7031 (1989).
74G. D. Harp and B. J. Berne, “Time-correlation functions, memory functions, and
molecular dynamics,” Phys. Rev. A 2, 975–996 (1970).
75R. Ramirez, R. Gebauer, M. Mareschal, and D. Borgis, “Density functional the-
ory of solvation in a polar solvent: Extracting the functional from homogeneous
solvent simulations,” Phys. Rev. E 66, 031206 (2002).
76J. J. Cerdà, V. Ballenegger, O. Lenz, and C. Holm, “P3M algorithm for dipolar
interactions,” J. Chem. Phys. 129, 234104 (2008).
77A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M.
Brown, P. S. Crozier, P. J. in ’t Veld, A. Kohlmeyer, S. G. Moore, T. D.
Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott, and S. J. Plimpton,
“LAMMPS - a flexible simulation tool for particle-based materials modeling at
the atomic, meso, and continuum scales,” Comput. Phys. Commun. 271, 108171
(2022).
78S. Delong, F. B. Usabiaga, and A. Donev, “Brownian dynamics of confined rigid
bodies,” J. Chem. Phys. 143, 144107 (2015).

79I. M. Ilie, W. J. Briels, and W. K. Den Otter, “An elementary singularity-free
Rotational Brownian Dynamics algorithm for anisotropic particles,” J. Chem.
Phys. 142, 114103 (2015).
80G. Nienhuis and J. M. Deutch, “Comparison of two theories for the two particle
distribution function of polar fluids,” J. Chem. Phys. 56, 5511–5515 (1972).
81R. Finken, V. Ballenegger, and J.-P. Hansen, “Onsager model for a variable
dielectric permittivity near an interface,” Mol. Phys. 101, 2559–2568 (2003).
82V. Ballenegger and J.-P. Hansen, “Structure and dielectric properties of polar
fluids with extended dipoles: Results from numerical simulations,” Mol. Phys. 102,
599–609 (2004).
83S. Kournopoulos, A. J. Haslam, G. Jackson, A. Galindo, and M. Schoen,
“Molecular theory of the static dielectric constant of dipolar fluids,” J. Chem. Phys.
156, 154111 (2022).
84D. Kivelson and P. Madden, “Theory of dielectric relaxation,” Mol. Phys. 30,
1749–1780 (1975).
85T. Samanta and D. V. Matyushov, “Nonlinear dielectric relaxation of polar
liquids,” J. Mol. Liq. 364, 119935 (2022).
86R. Kjellander and D. J. Mitchell, “Dressed-ion theory for electrolyte solutions:
A Debye–Hückel-like reformulation of the exact theory for the primitive model,”
J. Chem. Phys. 101, 603–626 (1994).
87R. Kjellander, “Nonlocal electrostatics in ionic liquids: The key to an under-
standing of the screening decay length and screened interactions,” J. Chem. Phys.
145, 124503 (2016).
88C. Zhang, J. Hutter, and M. Sprik, “Computing the Kirkwood g-factor by
combining constant Maxwell electric field and electric displacement simulations:
Application to the dielectric constant of liquid water,” J. Phys. Chem. Lett. 7,
2696–2701 (2016).
89S. Mahdisoltani and R. Golestanian, “Long-range fluctuation-induced forces in
driven electrolytes,” Phys. Rev. Lett. 126, 158002 (2021).
90S. Mahdisoltani and R. Golestanian, “Transient fluctuation-induced forces in
driven electrolytes after an electric field quench,” New J. Phys. 23, 073034 (2021).
91G. Du, D. S. Dean, B. Miao, and R. Podgornik, “Correlation decoupling of
Casimir interaction in an electrolyte driven by external electric fields,” Phys. Rev.
Lett. 133, 238002 (2024).
92G. Du, D. S. Dean, B. Miao, and R. Podgornik, “Repulsive thermal van der Waals
interaction in multispecies asymmetric electrolytes driven by external electric
fields,” Phys. Rev. E 111, 044108 (2025).
93I. Szalai and S. Dietrich, “Phase transitions and ordering of confined dipolar
fluids,” Eur. Phys. J. E 28, 347–359 (2009).
94A. Schlaich, E. W. Knapp, and R. R. Netz, “Water dielectric effects in planar
confinement,” Phys. Rev. Lett. 117, 048001 (2016).
95L. Fumagalli, A. Esfandiar, R. Fabregas, S. Hu, P. Ares, A. Janardanan, Q. Yang,
B. Radha, T. Taniguchi, K. Watanabe et al., “Anomalously low dielectric constant
of confined water,” Science 360, 1339–1342 (2018).

J. Chem. Phys. 163, 124107 (2025); doi: 10.1063/5.0292306 163, 124107-13

Published under an exclusive license by AIP Publishing

 22 Septem
ber 2025 12:00:30

https://pubs.aip.org/aip/jcp
https://doi.org/10.1103/physrevlett.133.268002
https://doi.org/10.1063/1.1750343
https://doi.org/10.1080/00268977500100341
https://doi.org/10.1016/0378-4371(80)90114-4
https://doi.org/10.1103/physrevlett.46.950
https://doi.org/10.1209/0295-5075/4/2/006
https://doi.org/10.1016/0378-4371(78)90027-4
https://doi.org/10.1063/1.1301531
https://doi.org/10.1098/rspa.1980.0135
https://doi.org/10.1063/1.462536
https://doi.org/10.1021/j100356a029
https://doi.org/10.1021/j100356a029
https://doi.org/10.1103/physreva.2.975
https://doi.org/10.1103/physreve.66.031206
https://doi.org/10.1063/1.3000389
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1063/1.4932062
https://doi.org/10.1063/1.4914322
https://doi.org/10.1063/1.4914322
https://doi.org/10.1063/1.1677068
https://doi.org/10.1080/0026897032000112892
https://doi.org/10.1080/00268970410001675554
https://doi.org/10.1063/5.0079511
https://doi.org/10.1080/00268977500103271
https://doi.org/10.1016/j.molliq.2022.119935
https://doi.org/10.1063/1.468116
https://doi.org/10.1063/1.4962756
https://doi.org/10.1021/acs.jpclett.6b01127
https://doi.org/10.1103/physrevlett.126.158002
https://doi.org/10.1088/1367-2630/ac0f1a
https://doi.org/10.1103/physrevlett.133.238002
https://doi.org/10.1103/physrevlett.133.238002
https://doi.org/10.1103/physreve.111.044108
https://doi.org/10.1140/epje/i2008-10424-2
https://doi.org/10.1103/physrevlett.117.048001
https://doi.org/10.1126/science.aat4191

