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Quantifying the correlations between the position of a tagged tracer and the density of surrounding
bath particles is crucial for understanding tracer diffusion in interacting particle systems, and for
characterizing the response properties of the bath. We address this problem analytically for both hard-
core and soft-core interactions, using minimal yet paradigmatic models in d spatial dimensions. In both
cases, we derive analytical expressions for the spatial correlation profiles in the reference frame of the
tracer. We reveal unexpected universal features in their large-distance behavior, characterized by power-
law tails with exponents that depend solely on the spatial dimensionality of the system. Beyond these
simple models, we demonstrate the robustness of our results across different regimes using particle-based
numerical simulations.
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Introduction—Assessing the statistics of the displace-
ment of a tagged tracer particle evolving in a complex
medium subject to thermal fluctuations is a paradigmatic
problem in statistical physics, which found in the last
decades numerous applications to microrheology [1–6] and
biophysics [7,8] experiments. A basic but powerful
approach toward describing tracer diffusion in complex
media is to neglect the effect that the tracer exerts on the
surrounding bath, which is assumed to remain in equilib-
rium at all times, and can thus generically be treated as a
source of noise [9]. This is exemplified by the celebrated
Langevin description of Brownian motion [10], which
assumes a large mass disparity between tracer and bath
particles [11,12]. However, such effective description
naturally breaks down if the tracer particle (TP) and the
bath particles have comparable sizes, because then corre-
lations between the tracer position and the density of the
surrounding bath assume a relevant role, and can no longer
be neglected. Characterizing these correlations is in general
a complex many-body problem. However, their knowledge
gives full access not only to the TP fluctuations, but also to
the response properties of the medium itself, which makes
the pursuit of these correlations (at least in approximate
forms) valuable.
An ideal and fertile arena for seeking analytical pre-

dictions for these correlations is provided by lattice gases,
which are arguably among the most emblematic models to
study transport properties in interacting particle systems
[13,14]. They consist of particles that can jump from one
site of the lattice to another, with the constraint that each
site can host at most one particle—this minimally models

hard-core or excluded-volume interactions. The one-
dimensional case, corresponding to the single-file geom-
etry, exemplifies spectacularly how the correlations with
the surrounding bath particles induce subdiffusive behavior
of the TP displacement [15]. These correlations have
recently been computed exactly for the symmetric exclu-
sion process [16] and related (integrable) one-dimensional
models [17–19]. In higher dimensions, approximate semi-
analytical solutions for these correlations have been key to
obtaining the variance of the TP position, particularly in
nonequilibrium settings [20–23].
On the other hand, in continuum space, particles are often

assumed to evolve according to a system of coupled
Langevin equations, featuring two-body interaction poten-
tials that provide a more realistic modeling of their
interactions (beyond excluded volume). In the overdamped
case, the exact evolution equation of the coarse-grained
particle density was derived in seminal works by Dean and
Kawasaki [24,25], yet the presence of nonlinear multipli-
cative noise has so far hindered all efforts toward its exact
solution. Conversely, the correction to the diffusion coef-
ficient of a driven TP induced by the bath, as well as the
average density profile in the frame of the TP, have only
more recently been addressed in [26] by linearizing the
coarse-grained equations around a fixed background den-
sity. However, this approach typically fails when attempting
to interpolate between the Dean-Kawasaki theory and the
hard-core particle limit by simply increasing the strength of
the two-body potentials [27], which prevents the description
of proper hardcorelike repulsive interactions. Besides,
computing the correlations between the TP position and
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the coarse-grained bath density beyond the average density
profile has never been attempted (to the best of our
knowledge) within this setting.
Because of the key role played by these correlations in

determining the TP statistics, their use in d-dimensional
lattice models has been so far mainly instrumental in the
description of the TP variance. In this Letter, we focus
instead on the stationary TP-bath correlations in their own
right, with the aim of analyzing their spatial properties.
Indeed, these profiles quantify the variation of the bath
density distribution due to a fluctuation of the TP position,
thus allowing one to probe the bath’s response even far
from the TP.
Tracer-bath correlations—We start by defining the

TP-bath correlation functions, which are the focus of this
Letter, and highlight their importance and intrinsic dynami-
cal nature. Although we will consider them in both discrete
and continuous settings, we introduce them here in the
continuous case for clarity. We denote by fXiðtÞg the
positions of the particles at time t. We single out particle
i ¼ 0, referred to hereafter as the TP, and denote its
displacement by XðtÞ≡X0ðtÞ −X0ð0Þ≡X0ðtÞ, adopting
the conventionX0ð0Þ ¼ 0. Let ρðx; tÞ denote the density of
the other particles (i ≠ 0), referred to as the bath particles.
We first note that XðtÞ and ρðx; tÞ are coupled.

Qualitatively, any large displacement XðtÞ of the TP in a
given direction requires the reorganization of a large number
of bath particles, encoded in the density ρðXðtÞ þ r; tÞ
around the tracer. In turn, the dynamics of this reorganiza-
tion governs that of the TP. The two random variables,XðtÞ
and ρðXðtÞ þ r; tÞ, are thus coupled, and characterizing this
coupling is essential to understanding the transport proper-
ties of the tracer and quantifying the perturbation induced by
its displacement.
Quantitatively, this coupling is naturally described by

the covariance CovfXðtÞ;ρðXðtÞþ r; tÞg≡ hXðtÞρðXðtÞ þ
r; tÞi− hXðtÞihρðXðtÞþ r; tÞi¼ hXðtÞρðXðtÞþ r; tÞi, since
hXðtÞi ¼ 0. We emphasize that these correlation functions
are intrinsically dynamical because they involve the dis-
placement XðtÞ of the TP rather than its absolute position.
Unlike equilibrium quantities, these correlation functions
cannot, in practice, be computed from the equilibrium Gibbs
measure [28].
Several important questions arise. (i) What is the sign of

this coupling? Without loss of generality, consider the
projection onto the direction ê1, namely hXðtÞρðXðtÞ þ
r; tÞi · ê1 ¼ hXtρðXðtÞ þ r; tÞi, where Xt ¼ XðtÞ · ê1. A
positive sign indicates that an increase in Xt is correlated
with an increase in the density at a relative position r from
the tracer, while a negative sign indicates anticorrelation.
(ii) What is the range of this coupling? In particular, can
short-range interactions lead to long-range reorganization
of the bath particles, or do they affect only a finite region
of space around the TP? (iii) What is the dynamics of
this coupling? Specifically, is this reorganization efficient

enough to result in a stationary correlation profile?
(iv) What are the relevant parameters controlling this
coupling? Does it depend on the nature of the interaction,
or on the efficiency of homogenization by diffusion (related
to the spatial dimension)?
In our Letter we provide explicit answers to these key

questions by determining and analyzing the TP-bath
correlation profiles. To this end, we first derive analytic
expressions for these quantities both for a lattice gas model
with hard-core interactions, and for a system of soft
interacting Brownian particles. We then find that a
power-law behavior at large distances, with a simple
algebraic decay exponent depending solely on the spatial
dimensionality, encompasses all the interacting particle
systems mentioned above—in spite of the intrinsically
distinct nature of their interactions, which otherwise
prevents their description on an equal footing. Using
numerical simulations, we argue that this behavior remains
robust beyond the assumptions underlying our analytic
derivation, and for Brownian suspensions with strongly
repulsive Lennard-Jones-type potentials.
Hard-core lattice gas—We first consider particles evolv-

ing on an infinite d-dimensional cubic lattice, with spacing
σ. Initially, each site is occupied with probability ρ̄. Particles
then perform symmetric random walks with nearest-neigh-
bor jumping rate 1=ð2dτÞ [so that their bare diffusion
coefficient is σ2=ð2τÞ], with the constraint that the target
site must be empty [see Fig. 1(a)]. The state of the system at
a given time t is specified by the tracer positionXðtÞ, and by
the set of occupations ρrðtÞ ¼ f0; 1g for each site r. The
joint probability distribution PðX; ρr; tÞ satisfies a master
equation ∂tP ¼ LP, where the well-known form of L is
reported in [29]. Multiplying its two sides by eλ·X and
averaging with respect to both ρr and X then yields an
evolution equation for the moment generating function
Ψðλ; tÞ≡ lnheλ·XðtÞi of the tracer position as [21]

(a) (b)

FIG. 1. Schematic representation of the two models considered
in this Letter, namely (a) a hard-core d-dimensional lattice
gas, where each particle can jump to one of its neighboring
sites with equal rates, only if the target site is empty; and (b) a
d-dimensional system of Brownian particles interacting via soft
pairwise potentials (see the main text). In both cases, we single
out the position XðtÞ of a tagged tracer particle (red).
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∂tΨðλ; tÞ ¼
1

2dτ

X
μ

ðeσλ·êμ − 1Þ½1 − wêμðλ; tÞ�: ð1Þ

Here, the sum runs over μ∈ f�1;…;�dg, we called êμ the
unit vectors along the Cartesian directions, and finally the
generalized profile wrðλ; tÞ ¼ hρXþreλ·Xi=heλ·Xi encodes
all correlations between the tracer position and the occu-
pations. Equation (1) demonstrates how these correlations
completely control the statistical properties of the tracer
position. The first among these cross correlations is

wð1Þ
r ≡dwr

dλ1

����
λ¼0

¼hðXt−hXtiÞðρXþr−hρXþriÞi¼hXtρXþri;

ð2Þ

where we indicated without loss of generality Xt ≡X · ê1
[since wð1Þ

r can only depend on the relative orientations of
X and r], and where in the last step we used that hXti ¼ 0
and hρXþri ¼ ρ̄. This is the simplest and most physically
significant among the TP-bath correlation profiles, and it
completely characterizes the variance of the TP [see
Eq. (1)]. In the following, we aim at analyzing its spatial
properties in the stationary limit attained at long times, and
for an infinite system. To this end, we note that an

evolution equation for wð1Þ
r ðtÞ [akin to Eq. (1) for

Ψðλ; tÞ] can be obtained starting from the master equation,
but it naturally involves higher-order cross-correlation
functions [29]. This hierarchy can however be closed
by approximating hρXþr ρXþr0 i ≃ hρXþri hρXþr0 i, and
hδXtρXþrρXþr0 i ≃ hρXþrihδXtρXþr0 iþhδXtρXþrihρXþr0 i,
where δx≡x− hxi. Such decoupling approximation
[20,21,37] goes beyond the simple mean-field [above
we only discarded terms of Oðδx2Þ and Oðδx3Þ, respec-
tively], and has been shown in [22] to become exact both
in the dense limit, and in the dilute limit with fixed bath
particles. In the same work, this method was used to derive

a closed set of self-consistent equations satisfied by wð1Þ
r

for the case of a driven tracer, which were then solved
numerically and used to accurately predict the diffusion
coefficient of the tracer. Here, we focus instead on the
unbiased case, for which we show in [29] that such self-
consistent equations can in fact be solved analytically. In

the stationary limit attained by wð1Þ
r ðtÞ if d ≥ 2, the result

reads simply

wð1Þ
r ¼ σρ̄ð1 − ρ̄Þ

ð2 − ρ̄Þd − ð2 − 3ρ̄ÞIdðê1Þ
IdðrÞ; ð3Þ

with IdðrÞ¼
R
π
−π½ddq=ð2πÞd�fsinðq1Þsinðq ·rÞ=½1− ð1=dÞP

d
j¼1 cosðqjÞ�g. Its asymptotic behavior for large positive

x≡ r · ê1 can then be inspected by standard techniques [29],
yielding

wð1Þ
r ∼

σρ̄ð1 − ρ̄Þ
ð2 − ρ̄Þd − ð2 − 3ρ̄ÞIdðê1Þ

Γðd=2Þd
πd=2

x1−d: ð4Þ

Note that wð1Þ
−r ¼ −wð1Þ

r by symmetry [see Eq. (2)], so that
in particular it vanishes for r⊥ê1, see the inset of Fig. 2.

Additionally, wð1Þ
r > 0 for r · ê1 > 0, indicating that in a

realization where Xt > 0 (corresponding to a net displace-
ment to the “right”), the density of particles around the
tracer will show an accumulation of particles in the same
direction (“in front” of the tracer), and a depletion of
particles in the opposite direction (r · ê1 < 0, “behind”).
This behavior is tested in Fig. 2 against numerical
simulations, showing excellent agreement [while we stress
that the prediction (3) is expected to become exact both in
the dense and dilute limits]. The simple algebraic decay

wð1Þ
r ∼ x1−d is our first main result. Below we consider a

system of Brownian particles featuring a substantially
distinct type of interaction, and construct an analogous
tracer-bath correlation profile, which we then characterize.
Soft interacting Brownian particles—As a second para-

digmatic model, we now consider a system of (N þ 1)
particles at positions XiðtÞ∈Rd [as in Fig. 1(b)], each
evolving according to the overdamped Langevin dynamics

∂tXiðtÞ ¼ −μ
X
j≠i

∇Xi
UðXiðtÞ −XjðtÞÞ þ ηiðtÞ: ð5Þ

Here, the noise terms are Gaussian with zero mean and
correlations hηiðtÞηTj ðt0Þi ¼ 2μTδi;jδðt − t0Þ1, where we set
the Boltzmann constant kB ¼ 1, while UðxÞ ¼ UðjxjÞ is a
pairwise interaction potential. This type of system lends
itself to analytical treatment within the Dean-Kawasaki
framework [24,25], upon linearization of the effective
coarse-grained dynamics. Following [24,26], we first derive

FIG. 2. Stationary tracer-bath correlation profile wð1Þ
r [see

Eqs. (2) and (3)] for the hard-core lattice gas model, as measured
from simulations in d ¼ 2. Its large-distance tails are charac-
terized by the algebraic behavior (4). In the simulation we used
L ¼ 100 and ρ̄ ¼ 0.8. Inset: color map indicating the spatial

symmetries of wð1Þ
r on a square lattice (red means positive while

blue means negative).
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the coupled evolution equations for the tracer position
XðtÞ≡Xi¼0ðtÞ, and the fluctuating density ρðx; tÞ ¼P

N
i¼1 δðx −XiðtÞÞ of the other particles. We then linearize

the latter around a fixed background density ρ̄ as
ρðx; tÞ ¼ ρ̄þ ρ̄1=2ϕðx; tÞ, according to the prescription
hϕðx; tÞ ≪ 1, where h≡ 1=ρ̄1=2. This yields [29]

∂tXðtÞ ¼ −hμ∇XH½ϕ;X� þ η0ðtÞ; ð6Þ

∂tϕðx; tÞ ¼ μ∇ ·

�
∇
δH½ϕ;X�
δϕðx; tÞ þ ξðx; tÞ

�
; ð7Þ

where hξðx; tÞξTðx0; t0Þi ¼ 2μTδðx − x0Þδðt − t0Þ1, and
with the pseudo-Hamiltonian

H½ϕ;X� ¼ 1

2

Z
dx dy ϕðxÞ½Tδðx − yÞ þ uðx − yÞ�ϕðyÞ

þ h
Z

dy ϕðyÞuðy −XÞ; ð8Þ

where we rescaled uðxÞ ¼ ρ̄UðxÞ.
Using Stratonovich calculus, we first derive the

relation [29]

∂tΨðλ; tÞ ¼ λ2μT − hμλ ·
Z

ddq
ð2πÞd iquqwqðλ; tÞ; ð9Þ

where Ψðλ; tÞ≡ lnheλ·XðtÞi as above, and where we
denoted uq ¼ R

ddx e−iq·xuðxÞ the spatial Fourier trans-
form of the interaction potential (which we assume hence-
forth to exist). The cumulants of the tracer position
are thus dictated by the correlations with the particle
bath, encoded in the generalized correlation profile
wðx; λ; tÞ≡ hϕðxþXðtÞ; tÞeλ·XðtÞi=heλ·XðtÞi, in complete
analogy with Eq. (1) for the discrete case. We emphasize
that these correlation profiles are in general dynamical
observables, and as such they are not directly reducible to
the usual pair correlation functions predicted and measured
for simple liquids [28,38–43]. Again, the first and most
relevant among these cross correlations is

wð1Þðx; tÞ≡ ê1 · hXðtÞϕðxþXðtÞ; tÞi; ð10Þ
i.e., the continuous counterpart of wð1Þ

r introduced in Eq. (2)
for the lattice gas model. In the following, we set out to
compute its stationary value wð1ÞðxÞ attained in the long-
time limit. To this end, we treat perturbatively the term
proportional to h in Eq. (8), which controls the interaction
between the tracer and the coarse-grained bath density. This
corresponds to an expansion around the soft interaction
limit, as we argue below and in [29]. Working in the Fourier
domain, we focus on [44]

∂tw
ð1Þ
q ðtÞ ¼

nD
ẊðtÞϕqðtÞ eiq·XðtÞ

E
þ
D
XðtÞ ϕ̇qðtÞ eiq·XðtÞ

E

þ i
D
½q · ẊðtÞ�XðtÞϕqðtÞ eiq·XðtÞ

Eo
· ê1; ð11Þ

and we replace ẊðtÞ and ϕ̇qðtÞ on the right-hand side by
using the equations of motion (6) and (7). This produces
several expectation values, which we compute in [29] within
perturbation theory—in particular, the terms involving the
Gaussian noises η0ðtÞ and ξðx; tÞ can be evaluated within
Stratonovich calculus using the Furutsu-Novikov-Donker
formula [45–50]. In the stationary limit, we thus find

wð1ÞðxÞ ¼ −hT
Z

ddq
ð2πÞd

eiq·xiq1uq
q2ðT þ uqÞð2T þ uqÞ

þOðh2Þ:

ð12Þ
Note that the calculation delineated above can be

promptly extended to the case in which the tracer is biased
by an external force f, which is obtained by adding a term
fδi;0 to the right-hand side of Eq. (6). In particular, in [29]
we recover by the same method the average density profile
wð0ÞðxÞ ¼ hϕðxþXÞi in the frame of the tracer, which had
been previously derived in [26] by distinct techniques.
The large-distance behavior of wð1ÞðxÞ in Eq. (12) can be

extracted without the need to specify the interaction
potential uq. Indeed, in [29] we analyze the singular

behavior of wð1Þ
q around q ∼ 0 and show that, for large

(positive) x ¼ x · ê1 and in d ≥ 2,

wð1ÞðxÞ ∼ hTuq¼0

ΩdðT þ uq¼0Þð2T þ uq¼0Þ
x1−d; ð13Þ

where Ωd is the d-dimensional solid angle. Remarkably,
wð1ÞðxÞ displays the same algebraic decay exponent as the
one found in Eq. (4) for the hard-core lattice gas, in spite of
the inherently distinct nature of the interparticle interactions
in these two models. Besides, also the prefactor in Eq. (13)
is largely insensitive to the spatial details of the interaction
potential, as it only depends on its typical energy scale via
uq¼0 [29]. In Fig. 3(a) we test this prediction for a system of
Brownian particles in d ¼ 2 interacting via Gaussian
pairwise potentials, finding excellent agreement (an analo-
gous test for a smaller system in d ¼ 3 is reported in [29]).
Robustness of the algebraic behavior—First, since in our

calculation we neglected perturbative terms of Oðh2Þ or
higher, it is natural to wonder whether the qualitative
features of wð1ÞðxÞ presented above remain robust away
from the limit in which h ¼ 1=ρ̄1=2 is small. We verified
numerically that this is indeed the case [see, e.g., Fig. 3(a),
for which ρ̄ ¼ 0.5]; even in regimes where discrepancies do
show up at short distances, by contrast they hardly affect the
large-distance tail (13) of the correlation profile. In fact,
in [29] we verify that the validity of perturbation theory is
rather linked to the interaction energy being small compared
to typical thermal fluctuations, as hinted above and in [26].
Furthermore, the expression (12) relies on the existence

of the Fourier transform uq of the interaction potential. This,
together with the use of perturbation theory, in principle
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restricts the applicability of the theory to soft interactions,
and excludes strong short-distance repulsion—such as the
one typically modeled by Lennard-Jones (LJ) potentials in
the description of fluids [28,51]. To test the robustness of the
asymptotic algebraic decay predicted for the correlation
profile wð1ÞðxÞ in Eq. (13), we have thus simulated LJ fluids
and measured wð1ÞðxÞ numerically. The results in Fig. 3(b)
indeed confirm the persistence of this large-distance alge-
braic behavior. In the simulations we used both LJ and
Weeks-Chandler-Andersen (WCA) potentials, the latter
corresponding to retaining only the repulsive part of the
LJ interaction, and shifting it vertically so that the minimum
potential energy is zero [29]. Remarkably, the two curves
shown in Fig. 3(b) appear to coincide, provided the typical
length and energy scales of the two potentials are chosen to
be equal. This is consistent with the prefactor in Eq. (13)
depending only on uq¼0, but it is nontrivial in the present
context, since the LJ and WCA potentials do not admit a
Fourier transform.
Conclusion—In summary, we have characterized the

cross-correlation profile between the TP position and the
density of surrounding particles, for several paradigmatic
interacting particle models. Remarkably, its large-distance
algebraic behavior wð1ÞðxÞ ∼ x1−d turns out to be simple and
robust upon changing the details of the pairwise interaction.
This decay is faster in higher dimensions, which traces back
to the efficiency of the homogenization by the diffusion of
the bath particles in high dimensions. Note that, in confined
quasi-1d systems such as strips, diffusion is even more
efficient, so that the decay is expected to be faster than
algebraic (see also [52] for a similar effect on the mean
density around a driven tracer).

Our findings pave the way toward the analysis of higher-
order correlation profiles, which will be the subject of future
work. We expect these and related observables to be
accessible using the approach developed in this Letter,
where the preliminary calculation of the stationary TP-bath
correlation profiles allows one to access the statistical
properties of the TP without resorting to the path-integral
formalism developed in [53]. For instance, it would be
interesting to inspect if the crossover from algebraic to
exponential decay of the average density profile wð0ÞðxÞ,
observed in [52] upon spatial confinement of the system,
carries over also to the continuum case [54]. Finally, our
analysis naturally calls for a unified description of such
seemingly different interacting particle systems, which
would shed light on the physical origin of the universal
behavior that we unveiled in this Letter.
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