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Abstract
The Dean–Kawasaki (DK) equation, which is at the basis of stochastic density functional theory
(SDFT), was proposed in the mid-nineties to describe the evolution of the density of interacting
Brownian particles, which can represent a large number of systems such as colloidal
suspensions, supercooled liquids, polymer melts, biological molecules, active or chemotactic
particles, or ions in solution. This theoretical framework, which can be summarized as a
mathematical reformulation of the coupled overdamped Langevin equations that govern the
dynamics of the particles, has attracted a significant amount of attention during the past thirty
years. In this review, I present the context in which this framework was introduced, and I recall
the main assumptions and calculation techniques that are employed to derive the DK equation.
Then, in the broader context of statistical mechanics, I show how SDFT is connected to other
theories, such fluctuating hydrodynamics, macroscopic fluctuation theory, or mode-coupling
theory. The mathematical questions that are raised by the DK equation are presented in a
non-specialist language. In the last parts of the review, I show how the original result was
extended in several directions, I present the different strategies and approximations that have
been employed to solve the DK equation, both analytically and numerically. I finally list the
different situations where SDFT was employed to describe the fluctuations of Brownian
suspensions, from the physics of active matter to the description of charged particles and
electrolytes.

Keywords: stochastic processes, nonequilibrium statistical physics, Langevin processes,
stochastic calculus, Brownian motion, diffusion
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1. Introduction

1.1. From a single Brownian particle...

The erratic motion of a mesoscopic particle in a fluid, which
originates from the random collisions between the solvent
molecules and the particle, is usually referred to as Brownian
motion [1]. From a theoretical point of view, such a sys-
tem is a priori very complicated to study, as it couples
the evolution of the particle with that of all the molecules
that constitute the solvent. In pioneering works, Einstein [2]
and Smoluchowski [3] proposed simplified descriptions of
this erratic motion. In these models, the dynamics of the
solvent particles are ignored, and themotion of themesoscopic
particle, instead of being explicitly described as the result of
the multiple collisions with solvent particles, is modeled by
a sequence of random elementary displacements. As a con-
sequence of the central limit theorem, the distribution of the
position of the particle is typically described by a Gaussian
distribution, whose variance (the mean-square displacement)
increases linearly with time. Such models are valid as long
as the mesoscopic particle is much larger than the solvent
molecules, but small enough for thermal fluctuations to over-
come its weight, which corresponds to characteristic sizes
from ∼1 nm to ∼1µm, and when the density of the particle
is comparable to that of the solvent. This stochastic view of
microscopicmotion in a fluid environment is one of the corner-
stone of soft matter and biological physics.

Relying on this stochastic perspective, Langevin [4] inten-
ded to write the equations of motions of the particle, i.e. the
equations satisfied by by its position r and velocity v. He pro-
posed to model the effect on the solvent through two con-
tributions: (i) a contribution that accounts for the dissipation
induced by the solvent, i.e. its resistance to any perturbation
that the colloid may impose on the solvent because of some
external forcing. Within linear response, the resulting force

typically reads−mγv, where γ has the dimension of an inverse
time; (ii) a contribution that accounts for the fluctuation of the
solvent, that fluctuates on a timescale τ c comparable to the
duration of the mean free path of a solvent molecule (i.e. the
time during which a solvent molecule travels without hitting
another molecule). Assuming that τ c is typically smaller than
other relevant timescales of the problem (the timescale of dis-
sipation and that of the typical diffusion of the colloid, i.e. the
time taken by a colloid to diffuse over its own length), the fluc-
tuation force is generally assumed to be δ-correlated, where
δ refers to Dirac’s distribution. Its amplitude follows from
the equipartition theorem, which ensures that 1

2m⟨v
2⟩= 1

2kBT,
where kB is the Boltzmann constant and T the temperature.
These assumptions result in the following equation obeyed by
v (the position r is simply obtained by integrating dr

dt = v), usu-
ally referred to as the Langevin equation:

m
dv
dt

=−γmv+
√

2mγkBTη (t) , (1)

where η(t) is a unit Gaussian white noise, such that ⟨ηi(t)⟩= 0
and ⟨ηi(t)ηj(t ′)⟩= δijδ(t− t ′).

In the limit of large frictions, i.e. when the fluid is very vis-
cous (or, equivalently, when one only observes the system on
durations much larger than the typical time γ−1), the degrees
of freedom associated with the velocity have all reached their
stationary value, and the term accounting for inertia in the
Langevin equation (the left-hand side of equation (1)) becomes
negligible. The equation simply becomes

dr
dt

=
√
2Dη (t) , (2)

where D= kBT/mγ is the bare diffusion coefficient. This
equation is often referred to as the overdamped Langevin
equation.

1.2. ...to multiple interacting Langevin processes

For a single, isolated particle, both the Langevin equation and
its overdamped limit can be solved very straightforwardly—
this is a textbook example of a Gaussian stochastic process [5,
6]. However, in many systems of biological or physical interest
(e.g. biomolecules or organelles in the intracellular medium,
colloidal suspensions, emulsions, polymeric solutions), diffu-
sion occurs in conditions which are much more complicated
than that of an isolated mesoscopic particle. Indeed, the erratic
motion of each particle is strongly affected by interactions
with the other particles in the system, for instance because of
excluded-volume effects, or because the particles are charged.
Diffusion in ‘real’ systems therefore depends on the complex
interplay between thermal fluctuations, due to the presence
of a solvent, and pair interactions. In the simple example of
a suspension made of N identical particles interacting via a
pair potential V, and in the overdamped limit, their positions
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r1, . . . ,rN obey:

drα (t)
dt

=−µ
N∑

β=1

∇V
(
rα (t)− rβ (t)

)
+
√
2Dηα (t) , (3)

where µ= 1/(mγ) is the mobility of the particle, and is related
to the bare diffusion coefficient through the fluctuation–
dissipation theoremD= µkBT, and where the noises ηα(t) are
uncorrelated onewith another: ⟨ηαi (t)η

β
j (t

′)⟩= δijδ
αβδ(t− t ′)

(throughout the review, the following convention will be used:
Greek letters will denote labels of particles, and Roman let-
ters Cartesian coordinates). In this framework, the dynamics of
the suspension are therefore described by the set of N coupled
stochastic differential equations given by equation (3).

1.3. Theoretical challenges and purpose of the
Dean–Kawasaki (DK) approach

From a numerical perspective, such coupled equations can be
integrated quite straightforwardly through Brownian dynam-
ics simulations (see [7, 8] for the fundamentals of this method,
and [9–11] for recent refinements). However, predicting the
behavior of such a suspension from an analytical perspective
is a theoretical challenge which raises numerous difficulties,
in spite of its importance to understand the underlying phys-
ics. The N-body problem that is set out in the previous section,
and the different strategies that can be employed to solve it (at
least partially or under suitable approximations), is at the heart
of the works that are reviewed in this manuscript. My aim is to
present, in the most instructive and non-technical way, some
of the different analytical techniques that have been proposed
to study the dynamics of Brownian particles coupled by pair
interactions, and which obey equations such as equation (3).
I will focus on the DK equation, also called more recently
‘stochastic density functional theory’ (SDFT).

Investigating the timeline of this topic reveals that its con-
ceptual aspects are at the crossroad between different topics of
theoretical physics (stochastic processes, statistical field the-
ory, disordered systems, classical density functional theory)
and of mathematics (probability theory, stochastic partial dif-
ferential equations, numerical analysis). On top of its funda-
mental richness, this level of modeling finds its applications to
predict and analyze the behavior of a wide range of nonequi-
librium systems, such as supercooled liquids, active matter, or
driven electrolytes.

The starting point of the review will be the framework
that was set out respectively by Kawasaki and Dean, which
are closely related to each other even though they differ on
the calculation strategies, and on the physical observables
they describe. Their common goal was to obtain an evolution
equation for the density of particles at a given point of the sys-
tem. In section 2, I present their fundamental results, and give
some details on the derivations and underlying assumptions of
the so-called ‘DK’ equation. In section 3, I place these results

in the more general context of theoretical statistical mechan-
ics, and show how they can be related to alternative strategies
that were employed earlier or later to describe the dynamics of
interacting Brownian particles. A few years after its derivation,
the DK equation has raised a number of questions of math-
ematical interest, regarding its well-posedness and possible
regularization. Even though this review is aimed at the phys-
ical community, I attempt in section 4 to summarize briefly
the different works that recently addressed the DK equation
as an object of mathematical interest. In section 5, I show
how the original DK equation, which applies in principle to
identical particles obeying simple overdamped dynamics, can
be extended to account for more complex situations. Section 6
is devoted to the different strategies that have been employed
to solve the DK equation, both analytically and numerically.
Finally, section 7 reviews the different systems that have been
studied thanks to the DK equation, and the results of physical,
chemical and biological interest that were obtained.

1.4. Terminology

The first occurrence of the phrasing ‘SDFT’ is probably due to
Archer and Rauscher [12], who use the adjective ‘stochastic’
to emphasize that the DK equation should not be confused
with ‘dynamical density functional theory’ (DDFT): the con-
nections between SDFT and DDFT will be discussed in
section 3.3. This denomination was subsequently adopted by
different authors. Importantly, the expression ‘SDFT’ was also
introduced recently in the theoretical chemistry community, to
denote a stochastic method to sample electronic structure of
molecules [13]: I emphasize that the framework described in
the present manuscript is unrelated.

2. Fundamental equations

2.1. Kawasaki’s approach

Studying the dynamics of Brownian suspensions which obey
evolution equations such as the one given in equation (3) has
been the object of many theoretical approaches. Among them,
mode-coupling theory (MCT), which has been proposed in
the context of supercooled liquids and glass transition [14,
15], has been particularly successful. Its idea goes as follows:
starting from the N-body dynamics of the suspension, one
derives formally the evolution equations for the two-point,
two-time density correlations. As expected, these equations
are unclosed, and give rise to an infinite hierarchy of equations
obeyed by correlation functions of higher and higher order.
The central idea of MCT is to close this hierarchy of equations
at the two-body level, by providing a suitable approximation
for the memory kernels that appear in the formal solution of
the Smoluchowski dynamics. This ‘mode-coupling approxim-
ation’ typically takes as input the static structure factor of the
liquid, that can be evaluated through numerical simulations

3



Rep. Prog. Phys. 88 (2025) 086601 Review

or through the usual approximations from the static theor-
ies of liquids (additional comments on MCT will be given in
section 3.2).

In 1994, Kawasaki proposed an alternative to classical
MCT, and introduced another way to close the hierarchy of
equations [16]. His idea was to start from the Smoluchowski
equation, obeyed by the N-body probability distribution
PN(r1, . . . ,rN; t) that can be deduced from equation (3), and
which reads ∂tPN(r1, . . . ,rN; t) = ΩPN, with the operator

Ω=∇N ·

D∇N+µ
∑
α>β

∇NV
(
rα − rβ

) , (4)

where ∇N is the 3N-dimensional gradient operator. Instead
of relying on the usual MCT strategy, which would con-
sist in projecting the N-body dynamics onto collective vari-
ables, for instance using the Mori–Zwanzig formalism [17,
18], Kawasaki suggested to perform a local coarse-graining
of the system. More precisely, the system is assumed to be
divided into small cells, which contain a number of particles
much larger than 1, but much smaller than the total number
of particles: the system is then described at a truly meso-
scopic level. The quantity of interest then becomes P({ρ̂}, t),
i.e. the probability to observe a given set of local densities
{ρ̂}= {ρ̂1, . . . , ρ̂Nc} in each of the Nc coarse-graining cells.

In order to derive an evolution equation for P({ρ̂}, t),
one needs to relate it to the N-body distribution function
PN. The coarse-graining procedure is then completed by an
hypothesis of local equilibrium. More precisely, one assumes
that the system is equilibrated at any time at the scale of
each coarse-graining cell. Within this approximation, the N-
body probability distribution PN is replaced by an equi-
librium counterpart which is compatible with the coarse-
grained density distribution functional: PN(r1, . . . ,rN; t)≃
Peq
N (r

1, . . . ,rN)P({ρ̂}, t)/Peq({ρ̂}). This hypothesis is expec-
ted to be valid for slow enough evolution.

In this procedure, which is performed on scales much larger
than the interaction range, the interaction part of the operatorΩ
is to be replaced by an effective interaction potential connected
to the direct pair correlation function of the fluid. Kawasaki
finally gets an equation obeyed by the probability distribution
functional P({ρ̂}, t) of the density variable ρ̂ that is derived
from the coarse-graining procedure, which reads

∂

∂t
P ({ρ̂} , t) =−D

ˆ
dx

δ

δρ̂(x)
∇· {ρ̂(x)

×∇
[

δ

δρ̂(x)
+

1
kBT

δF [ρ̂]
δρ̂(x)

]
P({ρ̂} , t)

}
, (5)

with the functional

F [ρ̂] = kBT
ˆ

dx ρ̂(x)
[
ln
ρ̂(x)
ρ0

− 1

]
+

1
2

ˆ
dx
ˆ

dx ′ [ρ̂(x)− ρ0]c(x− x ′) [ρ̂(x ′)− ρ0] ,

(6)

where c is the direct pair correlation function, and where
ρ0 = N/V is the overall density of particles, with V the volume
of the system. This set of equations, which actually has con-
nections with earlier MCT studies [19–21], is the main res-
ult presented by Kawasaki in [16]. Just like in MCT, this
approach requires the a priori knowledge of the static structure
of the liquid. However, the equation obeyed by the probabil-
ity distribution function P is particularly difficult to analyze,
as opposed to the typical MCT equations, which are integro-
differential equations obeyed by correlation functions, that can
usually be integrated numerically.

2.2. Dean’s derivation

In 1996, Dean also considered interacting Brownian particles,
and intended to derive the evolution equation of the density
of particles at a given point of space [22]. The spirit of his
approach was somewhat related to that of Kawasaki. However,
the technical treatment of the overdamped Langevin dynamics
is largely different, and I summarize it here. Starting from the
set of coupled Langevin equations (equation (3)), and consid-
ering some arbitrary test function f, Ito’s lemma [5] yields, for
any α ∈ {1, . . . ,N}:

df(rα (t))
dt

= D∇2f(rα (t))+
√
2Dηα (t) ·∇f(rα (t))

−µ

 N∑
β=1

∇V
(
rα (t)− rβ (t)

) ·∇f(rα (t)) .

(7)

One then defines the density function of a single particle
ρα(x, t)≡ δ(rα(t)− x) and deduces

df(rα (t))
dt

=

ˆ
dx ρα (x, t)

[
D∇2f(x)+

√
2Dηα (t) ·∇f(x)

−µ∇f(x) ·
N∑

β=1

∇V
(
x− rβ (t)

) . (8)

Integrating by parts yields

df(rα (t))
dt

=

ˆ
dx f(x)

{
D∇2ρα (x, t)−

√
2D∇· [ρα (x, t)ηα (t)]

+µ∇·

ρα (x, t) N∑
β=1

∇V
(
x− rβ (t)

) . (9)

From the definition of ρα(x, t), it is clear that f(rα(t)) =´
dx ρα(x, t)f(x). The derivative of this relation with respect

to t reads

df(rα (t))
dt

=

ˆ
dx

(
∂

∂t
ρα (x, t)

)
f(x) . (10)
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Figure 1. Schematic representation of the derivations by Kawasaki [16] and Dean [22]. See text for the definitions of the different quantities
involved in equations (i)–(iv). The blue background on the left panel represents the ‘solvent’ in which the Brownian particles are embedded,
and which causes their stochastic motion. The corresponding microscopic, overdamped dynamics is treated by a local coarse-graining
procedure by Kawasaki (top panel) and by the introduction of a stochastic density by Dean (bottom panel). From the point of view of
hydrodynamics, deriving the Dean–Kawasaki equation from the overdamped Langevin equations is equivalent to going from a Lagrangian
description (which amounts to tracking and following individual particles over time, as in equations (i) and (iii) on the figure) to a Eulerian
description (which amounts to observing a given point in the system and counting whether a particle is present or not, as in equations (ii)
and (iv)).

Comparing equations (10) and (9), and considering that these
equalities hold for any test function f, one finds

∂

∂t
ρα (x, t) = D∇2ρα (x, t)−

√
2D∇· [ρα (x, t)ηα (t)]

+µ∇·

ρα (x, t) N∑
β=1

∇V
(
x− rβ

) . (11)

The last step is to define the global density

ρ(x, t) =
N∑

α=1

δ (rα (t)− x) =
N∑

α=1

ρα (x, t) , (12)

and summing equation (11) for α= 1, . . . ,N yields:

∂

∂t
ρ(x, t) = D∇2ρ(x, t)+∇·

[
ξ (x, t)

√
2Dρ(x, t)

]
+µ∇·

[
ρ(x, t)

ˆ
dy ρ(y, t)∇V(x− y)

]
, (13)

where one uses the relation ∇V(x− rβ) =
´
dy∇V(x−

y)ρβ(y, t). Moreover, to derive equation (13), one uses the
fact that the noise term Ξ(x, t)≡−

∑N
α=1∇· [ρα(x, t)ηα(t)]

is Gaussian (this follows from the fact that, when computing
its cumulants, one can average over the noises ηα(t) inde-
pendently), and has the same variance as∇· [

√
ρ(x, t)ξ(x, t)],

ξ(x, t) being a space-dependent Gaussian random variable,
which satisfies

⟨ξi (x, t)⟩= 0, (14)

⟨ξi (x, t)ξj (x ′, t ′)⟩= δijδ (t− t ′)δ (x− x ′) . (15)

This can be proven by showing that ⟨Ξ(x, t)Ξ(x ′, t ′)⟩=
δ(t− t ′)

∑N
α=1∇x ·∇x ′(ρα(x, t)ρα(x ′, t ′)), and using

ρα(x, t)ρα(x ′, t ′) = δ(x− x ′)ρα(x, t). Equation (13) is the
main result from [22], and is usually called Dean’s equation.

Several comments follow: (i) it is important to underline
that the derivation of equation (13) does not rely on any
approximation, and that it is equivalent to the set of coupled
Langevin equations given by equation (3) (this equivalence is
summarized on the sketch shown on figure 1). In other words,
it is not associated with any coarse-graining procedure, in such
a way that it preserves the notion of ‘particle entity’, i.e. the
property that individual particles only exist at one position in
space at any given time (this was proven rigorously in [23]);
(ii) however, the unknown of this equation is the stochastic
density ρ(x, t) =

∑N
α=1 δ(r

α(t)− x), which is a sum of singu-
lar δ-functions, and should therefore be seen as a density oper-
ator defined in the sense of distributions. Its physical meaning
is therefore unclear, unless one performs ensemble averages or
local spatial averages. Dean’s equation should then be under-
stood as being set in a distribution space; (iii) equation (13)

5
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has two nonlinearities in ρ. The interaction term is propor-
tional to ρ2, which directly stems from the pairwise interac-
tions between particles.Moreover, the noise term scales as

√
ρ:

Dean’s equation is nonlinear even for noninteracting particles;
(iv) the noise term in equation (13) is multiplicative, i.e. its
amplitude depends on the random variable ρ itself. This raises
a number of difficulties in the analysis of this equation, which
will be discussed later in this review; (v) finally, equation (13)
can be rewritten under the form

∂

∂t
ρ(x, t) = µ∇·

[
ρ(x, t)∇ δF [ρ]

δρ(x, t)

]
+∇·

[
ξ (x, t)

√
2Dρ(x, t)

]
, (16)

with the functional

F [ρ] = kBT
ˆ

dxρ(x) lnρ(x)

+
1
2

ˆ
dx
ˆ

dx ′ρ(x)V(x− x ′)ρ(x ′) . (17)

This highlights the strong connection between the result
derived byKawasaki, and that obtained byDean.While the lat-
ter derived a Langevin-like equation obeyed by the stochastic
density ρ, the former derived the evolution equation of a prob-
ability density functional P associated with a locally coarse-
grained density ρ̂. To some extent, and as a guiding ana-
logy, the result by Kawasaki can be understood as a ‘Fokker–
Planck’ counterpart to the ‘Langevin’ equation derived by
Dean (see for instance [12, 24] for a discussion of the rela-
tionship between equations (5) and (13)). Even though the ana-
logy should remain limited, since the densities ρ and ρ̂ do not
have the same physical meaning, and since the two derivations
rely on rather different hypotheses, equation (13) is sometimes
called the ‘DK’ equation in the literature—this is the termino-
logy that I will adopt in what follows.

3. Relationships to other theories

In this section, I show how the DK equation can be related to
other classical theories from statistical mechanics, that either
preceded or followed its derivation in the mid-nineties.

3.1. Fluctuating hydrodynamics and macroscopic fluctuation
theory (MFT)

The typical program of statistical mechanics consists in start-
ing from the microscopic laws of evolution of the many
particles that constitute the system, and in deducing a mac-
roscopic description of the overall ‘fluid’. One typically ends
up with hydrodynamic equations, that are obeyed by con-
served fields (e.g. particle density, momentum or energy).
These equations are valid on sufficiently coarse timescales
and length scales. Such hydrodynamic laws of evolution can
be refined by computing the fluctuations around the determ-
inistic evolution under suitable hypotheses. It typically relies
on local equilibrium assumptions: more precisely, the system
is assumed to reach microscopic equilibrium in a time much

shorter than the typical times associated with macroscopic
evolution. This framework, usually called fluctuating hydro-
dynamics, was initiated by Landau and Lifshitz [25], and sub-
sequently discussed and developed by many authors, such as
Fox [26] or Spohn [27]. By extension, the phrasing ‘fluctuating
hydrodynamics’ is often used to describe stochastic differen-
tial equations obeyed by density functionals, independently on
how they are derived from microscopic principles [28–32].

Denoting by ρ̌(x, t) a suitably coarse-grained particle dens-
ity, the evolution of a diffusive system is given by a continuity
equation:

∂tρ̌(x, t) =−∇ · ǰ(x, t) , (18)

which is completed by the analogous of a constitutive
equation, which relates the current ǰ to the density ρ̌:

ǰ(x, t) =−Ď(ρ̌(x, t))∇ρ̌(x, t)+
√
σ̌ (ρ̌(x, t))η (x, t) , (19)

where η(x, t) is a Gaussian noise of zero average and vari-
ance ⟨η(x, t)η(x ′, t ′)⟩= δ(x− x ′)δ(t− t ′), and where Ď and
σ̌ are respectively the (collective) diffusion coefficient and the
mobility. Under the assumption of local equilibrium, they are
related through the relation 2Ď(ρ̌)/σ̌(ρ̌) = f ′ ′(ρ̌), where f is
the free energy density [33]. Importantly, all the microscopic
aspects of the dynamics (such as pairwise interactions) are
encoded in the transport coefficients Ď and σ̌.

Such description of the dynamics of the system is partic-
ularly convenient. Together with initial and boundary condi-
tions, it allows to compute many quantities, such as station-
ary profiles, density correlations, the probability to observe
a given macroscopic profile, relaxation towards equilibrium
etc. In this context, MFT was proposed in the early 2000 s
by Bertini and collaborators [34–36]. MFT is a determin-
istic reformulation of fluctuating hydrodynamics: through a
path-integral reformulation of the stochastic dynamics given in
equations (18) and (19), one can calculate exactly large devi-
ation functions of the density in generic driven diffusive sys-
tems. This framework has been successfully applied by vari-
ous authors to get exact results on current fluctuations and
tracer diffusion in paradigmatic one-dimensional models of
statistical mechanics, in which the coefficients Ď and σ̌ are
known exactly [37–43].

At this stage, it is tempting to establish a relationship
between equations (18) and (19) on the one hand, and the
DK equation (equation (13)) on the other hand, since there
exist very strong similarities between the two sets of equations
(see [44, 45] for discussions on the connection between both
approaches). However, we must emphasize that the fluctuat-
ing hydrodynamics approach differs from that of SDFT, in the
sense where the DK equation does not rely on any coarse-
graining approximation, and is an exact reformulation of the
microscopic dynamics. It is however interesting to draw a link
between the two approaches, since the mathematical methods
developed to study the large deviation of the fluctuating hydro-
dynamics equation can also be employed to obtain exact res-
ults on the DK equation. For instance, for a finite number of
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non-interacting particles, this was essentially the method fol-
lowed by Velenich et al in a paper [46] that will be commented
later (section 6.1).

Finally, in the particular situation where the particles inter-
act via a mean-field-type interaction (for instance when the
strength of the potential scales with the inverse number of
particles), and in the limit of a very large number of particles
(N→∞), the noise term in equation (13) is subdominant. It
can then be shown that the DK equation becomes equivalent
to the (deterministic) McKean–Vlasov equation [47], which
has been studied extensively in the mathematical literature. In
this particular limit, a connection between the DK equation
and MFT has been established by Bouchet et al [48], which
allowed them to study the phase diagram of amean-fieldmodel
of coupled stochastic rotators (on mean-field approaches, see
also [49]).

3.2. MCT

MCTwas initially proposed to describe the dynamics of glass-
forming liquids, in the seminal works by Götze [14]. The
quantity of interest inMCT is the intermediate scattering func-
tion F(q, t), defined as

F(q, t) =
1
N
⟨ρ̃(q, t) ρ̃(−q,0)⟩, (20)

with the Fourier transform of the density ρ̃(q, t) =∑N
α=1 e

−iq·rα(t) (throughout this review, we will use the
following convention for Fourier transformation: ψ̃(q) =´
dre−iqrψ(r), and its inverse: ψ(r) = 1

(2π)d
´
dqeiqrψ̃(q)).

An equation of motion for F(q, t) can be obtained by studying
the variables of interest, i.e. the density modes, with the Mori–
Zwanzig projection formalism [17, 18]. This results in an exact
equation for F(q, t)which involves a memory kernel, that con-
tains all the information about particle interactions, and that
cannot be expressed simply in terms of the unknown F. The
main approximations of MCT are (i) to express the memory
kernel as a four-point correlation function, and (ii) to decouple
four-point correlation functions as a product of two-point cor-
relation functions. This typically yields a closed equation for
the intermediate scattering function F, that only requires as
inputs the static structure factor S(q) = F(q,0) or equivalently
the direct correlation function c(q) = (1− 1/S(q))/ρ0, which
can be computed from numerical simulations or through the
usual closures from the static theory of liquids [50]. I will not
go into further details on MCT and refer the reader to recent
reviews [51–53].

This standard MCT was long considered as the most suc-
cessful theory that is derived from microscopic principles
and that may explain many features of the glass trans-
itions as observed in experiments and numerical simulations.
Unfortunately, in the low-temperature or high-density regime,
standard MCT predicts that the system may become non-
ergodic, in disagreement with all other observations. The
decoupling approximation that is at the basis of MCT was

therefore discussed, and it was suggested that adding higher-
order correlation functions could resolve the issue of non-
ergodicity [54], but it remained technically challenging.

In this context, approaches such as fluctuating hydro-
dynamics, and more specifically the DK equation, appeared
as promising to rederive MCT-like equations, and potentially
to improve the standard result [55–57]. Indeed, the interme-
diate scattering function F(q, t) is defined in terms of the
Fourier transform of the density ρ, which happens to be the
quantity which obeys the DK equation. The idea was then
to adopt a path-integral formulation of the DK equation, and
to derive the associated action following the Martin–Siggia–
Rose/Janssen–De Dominicis–Peliti formalism [58–60]. The
perturbative derivation of standard MCT using this method
was actually quite subtle, as fluctuation–dissipation relations
need to be preserved [61–63]—an aspect which is closely
related to the time-reversal symmetry of the action [64].
StandardMCTwas eventually successfully rederived from the
DK equation by Kim et al [65], improving on a prelimin-
ary attempt [66]. This derivation relies on a field-theoretical
formulation of the DK equation, that is expanded around a
Gaussian theory, i.e. not around the interaction-free case, that
is non-Gaussian (this will be discussed in section 6.1). In sum-
mary, this series of works highlights the strong connections
that exist between SDFT and MCT. As a final remark, note
that MCT can also be connected to DDFT, that will be the
object of the next section, in a less rigorous but more phys-
ical way [67, 68].

3.3. DDFT

As emphasized in section 2.2, Dean’s equation is obeyed by
a stochastic density, defined as a sum of δ-functions, eval-
uated at fluctuating positions. A natural way to analyze the
dynamics of this density would be to start by studying its aver-
age behavior, and it is tempting to perform an ensemble aver-
age of equation (13). Assuming that each realization of the
stochastic density field ρ has a probability P[ρ], and defin-
ing ensemble average as ⟨·⟩=

´
Dρ ·P[ρ]/

´
Dρ P[ρ], I define

the ensemble-averaged density (i.e. averaged over the noise
realizations) as ρ̄(x, t) = ⟨ρ(x, t)⟩. From equation (13), one
finds [69]:

∂

∂t
ρ̄(x, t) = D∇2ρ̄(x, t)

+µ∇·
[ˆ

dy ⟨ρ(x, t)ρ(y, t)⟩∇V(x− y)
]
.

(21)

In order to close this equation, one needs to express the
two-point correlation function ⟨ρ(x, t)ρ(y, t)⟩ in terms of the
one-point density ρ̄(x, t): again, this requires some clos-
ure approximation. Indeed, any exact evolution equation for
the two-point correlation function ⟨ρ(x, t)ρ(y, t)⟩ will involve
some three-point correlation functions, and so on: this is the
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usual BBGKY-like hierarchy of equations that appears when
describing interacting particles [50, 70].

The simplest approximation would consist in writing
⟨ρ̂(x, t)ρ̂(y, t)⟩ ≃ ρ̄(x, t)ρ̄(y, t). This mean-field approxima-
tion, which can be interesting in certain limits, would non-
etheless be pathological for particles with strong repulsion,
for instance. The idea of DDFT is to approximate the two-
point correlation function with the help of equilibrium free
energy density functionals. More precisely, the excess part of
the free energy, which contains information about the inter-
particle correlations, may be used to ‘close’ equation (21).
This was initiated phenomenologically by Evans [71], and a
theoretical framework was developed later on. I follow here
the ideas from [69], whereMarconi and Tarazona proposed the
‘adiabatic approximation’. Consider an equilibrium system,
described by a time-independent density function ρeq, with the
same interactions as in the dynamical system of interest. Such
a system can be described by usual (static) density functional
theory [50, 71, 72], with the free energy functional

Feq [ρeq] = kBT
ˆ

dx ρeq (x)
[
ln
ρeq (x)
ρ0

+ 1

]
+Fexc [ρeq] ,

(22)

where Fexc[ρeq] is the excess free energy density functional,
which contains all the information about particle interactions,
and where ρeq(x) is the equilibrium, static counterpart to
ρ̄(x, t).

Marconi and Tarazona then proposed the following approx-
imation:

ˆ
dy ⟨ρ̂(x, t) ρ̂(y, t)⟩∇V(x− y)≃ ρ̄(x, t)∇δFexc [ρ̄(x, t)]

δρ̄(x, t)
.

(23)

This is obtained by relying on the fact that, at each time, one
can find a fictitious external potential that equilibrates the sys-
tem [73] (i.e. that minimizes the grand potential, in the lan-
guage of classical DFT). In other words, the DDFT approx-
imation replaces the ‘true’ non-equilibrium pair distribution
function ⟨ρ̂(x, t)ρ̂(y, t)⟩ by the equilibrium one, and then uses
the equilibrium density functional Fexc to express it. In sum-
mary, provided that the equilibrium Fexc[ρ] is known explicitly
(which is the case for many systems through accurate approx-
imations that have been in the framework of classical DFT),
one gets a closed equation for the (ensemble-averaged) one-
body density:

∂

∂t
ρ̄(x, t) = µ∇·

[
ρ̄(x, t)∇

δFeq [ρ̄]

δρ̄(x, t)

]
. (24)

Other theoretical ways can be followed to get this DDFT
equation, for instance using projection operators [74, 75].

As opposed to classical, static DFT, which predicts the
equilibrium configuration of a system of interacting particles
typically through functional minimization, DDFT provides,
within a set of approximations, the time evolution of a sys-
tem to its equilibrium configuration. This approach quickly

became successful to predict dynamical phenomena in suspen-
sions of interacting Brownian particles, such as phase separ-
ation, nucleation, pattern formation, in systems ranging from
polymers to passive and active colloidal fluids (see [68] for
a recent review on DDFT). More recently, this approach has
been completed by power functional theory, a formal frame-
work to treat dynamics in a variational way [76–79]. Finally,
and to go back to the purpose of this review, I emphasize that
the main drawback of DDFT is that it leads to deterministic
equations, that are able to predict the time evolution of the sys-
tem, but only its average behavior. It does not give information
on fluctuations around the average behavior, which is the core
of SDFT and its main advantage.

We conclude this section by discussing the relation-
ships between the equation derived by Kawasaki in 1994
(equation (5)), that derived by Dean in 1996 (equation (13)),
and the DDFT equation written in this section (equation (24)).
These three equations have apparent similarities: they all stem
from the same microscopic dynamics (N interacting Brownian
particles), and they give the time evolution of a ‘particle dens-
ity’. However, the three densities ρ̂, ρ and ρ̄, which are the
variables involved in equations (5), (13) and (24), respectively
have very different physical meanings—the choice of notation
highlights this difference. The first one is a spatially coarse-
grained density; the second is a ‘proper’ microscopic dens-
ity, which is however defined in distribution space, strictly
speaking; the third one is an ensemble-averaged density. These
three equations have therefore different physical grounds, and
the choice of describing a system of Brownian particles with
one approach or the other should be done carefully, guided
by the level of description that is to be adopted and the phys-
ical conclusions that are to be drawn. This misleading related-
ness has been a source of confusion in the literature, which
was eventually clarified by different authors, see in particular
[12, 24, 80–82].

4. Mathematical considerations

As shown by its history and recent developments, the DK
equation has strong links with the physical world, and has
motivated a lot of work in different physics communities,
both on its theoretical aspects and on applications. However,
the mathematical analysis of this equation has begun only
recently. Several fundamental questions have been raised and
addressed. Although this review is aimed at physicists, I found
it interesting to review these recent mathematical results in a
non-technical way.

The first problem that was addressed by mathematicians
concerns the well-posedness of the DK equation, and more
precisely the existence and uniqueness of its solutions.
Interestingly, it was shown, first in the case of non-interacting
particles [83], that the DK equation is only well-posed for a
discrete set of values of the diffusion coefficient D. In other
words, from a rigorous point of view, the DK equation only
admits solutions for very specific values of parameters. This
is rather surprising and puzzling given the interest of the DK
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equation and its predictive power when it is used in less rigor-
ous ways. This result was later extended to the case of particles
interacting through smooth enough potentials [84], to the case
where a specific initial condition is imposed [85], to non-local
and singular interaction kernels [86], and to the underdamped
case [87].

The meaning of the density ρ (sometimes called ‘empirical
density’ in the mathematical literature), defined in the original
setting as a sum of delta functions, is rather unphysical, and the
DK equationwould only be defined rigorously in distributional
space. An interesting alternative is to regularize the density
(in the spirit of numerical methods such as smoothed-particle
hydrodynamics [88]), and to define it as

ρϵ (x, t) =
N∑

α=1

wϵ (x− rα (t)) , (25)

where wϵ(y) = e−y2/2ϵ2/
√
2π ϵ2 is a Gaussian kernel of vari-

ance ϵ2. The original DK equation may therefore be retrieved
by taking the limit ϵ→ 0. The equation satisfied by ρϵ
was derived and analyzed by Cornalba et al both in one
dimension [89, 90] and higher dimensions [91]—note that
these works also include the case of inertial, underdamped
dynamics.

Finally, I mention that recent mathematical developments
have focused on regularizing the DK equation by resorting to
spatial discretization [92], whose validity is checked by veri-
fying that density fluctuations are correctly predicted. This
provides a formal basis for some of the numerical schemes
that are discussed in section 6.3.

5. Some extensions of the original result

The original DK equation, as stated in equations (5) and (13),
holds for identical Brownian particles, that obey overdamped
dynamics, and which are immersed in a solvent which is
described implicitly (in the sense that it only influences
the dynamics of the particles through viscous damping and
through its thermal fluctuations, and not through any fluid-
mediated interactions). This ‘simple’ result was subsequently
extended to more general situations, by adding different
ingredients to the original model. In this section, I list some
of the different extensions of the original DK equation.

Going beyond the overdamped limit, the effect of inertia
was included in the DK equations in [93, 94]. The starting
point of this calculation is the set of (underdamped) Langevin
equations:

drα

dt
= vα, (26)

m
dvα

dt
=−γmvα −

N∑
β=1

∇V
(
rα − rβ

)
+
√

2mγkBTη
α (t) . (27)

Itô calculus can be performed on both these equations
to yield coupled evolution equations for the density of
particles, defined as before ρ(x, t) =

∑N
α=1 δ(x− rα(t)), and

the momentum density p(x, t) =
∑N

α=1mv
α(t)δ(x− rα(t)).

Still in the situation where momentum of the particles matter,
one can include the effect of the collisions between particles,
aiming at application to granular materials [95].

Donev and collaborators studied the effect of hydro-
dynamic interactions, and derived extensions of the DK
equation which include explicitly the hydrodynamic tensors
that encode from momentum exchange between the
particles [96, 97]. In the presence of hydrodynamic inter-
actions, the difficulty lies in the noise term of equation (13),
which becomes multiplicative. Indeed, the scalar diffusion
coefficientD needs to be replaced by a diffusion tensor, which
generally depends on the positions of all the particles and
therefore on the density ρ, i.e. on the random variable itself.
Note that, at the microscopic level (i.e. even before deriving
the DK equation), integrating numerically the equations of
motion for r1, . . . ,rN (equation (3)) with hydrodynamic inter-
actions is challenging, and requires some advanced numerical
methods [98].

We finally list a few other recent extensions of the original
DK equation: (i) the situation where the Brownian particles
bear an orientational degree of freedom can be addressed by
extending straightforwardly the original framework: this is
important in the case where the Brownian particles repres-
ent force or charge dipoles [99, 100], or in the context of act-
ive matter, see section 7.2; (ii) in the situation where the sus-
pension is made of several species of particles (that may dif-
fer through their sizes, their charge, their interaction poten-
tials...), one can obtain sets of equations obeyed by the densit-
ies associated to each species [101–104]; (iii) a generalization
of the DK equation can be formally derived in the situation
where the noise is non-Gaussian, and has non-zero cumulants
of arbitrary order [105]; (iv) the situation where the Brownian
particles may undergo simple unimolecular ‘chemical reac-
tions’, in such a way that they switch randomly between differ-
ent states, has been addressed recently [106, 107]; (v) finally,
Bressloff recently derived extensions of the DK equations with
stochastic resetting [108], or in the presence of a reflecting or
partially absorbing boundary [109].

6. Exact and approximate solutions to the DK
equation

6.1. Exact results

In the limiting case where the Brownian particles do not inter-
act with each other (i.e. V = 0), the DK equation reduces to

∂tρ(x, t) = D∇2ρ(x, t)+∇·
[
ξ (x, t)

√
2Dρ(x, t)

]
. (28)

Importantly, even in the non-interacting case, the equation
obeyed by the density ρ(x, t) is non-trivial, since it is nonlinear
and includes multiplicative noise. In particular, this shows that
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the statistics of the density is a priori non-Gaussian, even in the
absence of interactions. Using a path-integral formalism [58–
60], Velenich et al [46] reformulated the DK equation as a field
theory, which contains an interaction term: it originates from
the constraint that the density ρ must remain positive (in con-
trast with a simple free field). Using both a direct calculation
and a more elaborated approach with Feynman diagrams, the
n-point correlation functions of the density field ρ are com-
puted recovering the physically expected result, namely that
the density ρ has Poissonian statistics. This is, to my know-
ledge, the only limiting case where the DK equation can been
solved exactly—albeit in a rather formal and unpractical way.
More recently, this result was extended by studying perturbat-
ively the effect of an external quenched potential on the statist-
ics of the noninteracting gas [110]. Finally, we recently charac-
terized analytically the non-Gaussian fluctuations in the case
of interacting particles, in the limit of high-density and weak
interactions between particles [111].

6.2. Perturbative solutions

As underlined in section 2.2, the main difficulty in study-
ing analytically the Dean equation is due to the two sources
of non-linearities in equation (13), namely the noise term,
which is of order ρ1/2, and the interaction term, which is of
order ρ2. Assuming that some ground state of the dynam-
ics ρ∗(x) is known, it appears natural to write the density as
ρ(x, t) = ρ∗(x)+

√
ρ0ϕ(x, t), where ϕ(x, t) is small compared

to ρ∗(x)/
√
ρ0. The prefactor

√
ρ0 is added for dimensional

reasons—this will be made clear in what follows. Several
choices can be made for the ground state ρ∗(x).

6.2.1. Linearization around a constant, uniform state. A nat-
ural choice for ρ∗(x) is the constant, uniform value ρ0 = N/V ,
where V is the volume of the system [45, 112, 113]. Writing

ρ(x, t) = ρ0 +
√
ρ0ϕ(x, t) , (29)

Equation (13) becomes, after having divided both sides by√
ρ0:

∂tϕ(x, t) = D∇2ϕ(x, t)+µρ0∇· [(ϕ ∗∇V)(x, t)]
+µ

√
ρ0∇· [ϕ (x, t)(ϕ ∗∇V)(x, t)]

+
√
2D∇·

[
ξ (x, t)

(
1+

ϕ(x, t)
√
ρ0

)1/2
]
, (30)

where one introduces the convolution operator ∗: (V ∗
ϕ)(x, t)≡

´
dy V(x− y)ϕ(y, t). In the limit where the perturb-

ation from the constant uniform state is small (ϕ ≪√
ρ0),

one writes (1+ϕ(x, t)/
√
ρ0)

1/2 ≃ 1+ϕ(x, t)/2
√
ρ0, and two

terms may be neglected: the terms proportional to ϕ2, if
one stays at linear order in ϕ, and the multiplicative noise
term, if one assumes that ρ0 is large, i.e. if one linearizes
around a dense homogeneous state—rigorously, this perturb-
ative scheme is valid in the joint limit where the density ρ0 is
very large and the strength of the interactions very small, the

product of these two quantities being constant. This yields

∂tϕ(x, t) =D∇2ϕ(x, t)+ ρ0µ∇2 [(V ∗ϕ)(x, t)]

+
√
2D∇· ξ (x, t) . (31)

This linear equation for ϕ can be solved for in Fourier space,
in which it reads

∂tϕ̃(q, t) =−Dq2ϕ̃(q, t)−µρ0q
2Ṽ(q) ϕ̃(q, t)+

√
2Dη̃ (q, t) ,

(32)

where the (scalar) noise η̃ has zero average and variance
⟨η̃(q, t)η̃(q ′, t ′)⟩= (2π)dq2δ(q+ q ′)δ(t− t ′).

Interestingly, with this linearized equation, it is easy to
derive the pair correlation function, defined in real space in
its translationally invariant form as h(r) = [⟨ϕ(r, t)ϕ(0, t)⟩−
δ(r)]/ρ0 [50]. The structure factor S(q) can be deduced using
its definition: S(q) = 1+ ρ0h̃(q), and one gets

S(q) =
(
1+

ρ0Ṽ(q)
kBT

)−1

, (33)

which coincides with the result obtained within the random
phase approximation [50, 114, 115]. This approximation is
one of the classical closures that is used in the static theory of
liquids. It consists in assuming that the direction correlation
function c̃(q) (related to the pair correlation function through
the Ornstein–Zernike relation c̃(q) = h̃(q)/[1+ ρ0h̃(q)] [50])
is simply related to the pair potential through

c̃(q) =− Ṽ(q)
kBT

, (34)

which is assumed to hold for any q. It was proposed in the
context of long-range interaction (such as Coulombian) and
was successfully applied to study the structure of liquids of
softcore particles, such as in the Gaussian core model [116–
118]. The linearized DK equation (31) can therefore be seen
as a dynamical extension of the static random phase approx-
imation. This linearized version has been used in many of the
applications that will be presented in section 7.

It is clear from equation (31) that the field ϕ will have
Gaussian fluctuations (the linearization gets rid of all the non-
Gaussianities that can be measured in a more thorough treat-
ment of the original DK equation [111]). Equation (31) can
therefore serve as the basis of a simple Gaussian and dynam-
ical theory of Brownian suspensions [119], in which stress cor-
relations and viscosity can be computed explicitly [120], at
least within this level of description where the inner degrees
of freedom of the solvent are ignored. For instance, the two-
point, two-time correlation function of the perturbation ϕ can
be computed in Fourier space, and simply reads

⟨ϕ̃(q, t) ϕ̃(q ′, t ′)⟩

=
(2π)d δ (q+ q ′)

1+ ρ0Ṽ(q)/kBT
exp

{
−Dq2

[
1+

ρ0Ṽ(q)
kBT

]
|t− t ′|

}
.

(35)
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As a final remark, I emphasize that, to solve equation (31), one
transforms it into Fourier space, which relies on the assump-
tion that the interaction potential V(r) admits a Fourier trans-
form. This is actually a very strong limitation when one tries
to apply this procedure to ‘realistic’ potentials, for instance
with short-range repulsion, which typically leads to func-
tional dependencies which are non-integrable. The resulting
divergent interactions in reciprocal space could potentially be
addressed by perturbative methods that have recently been put
forward [121].

6.2.2. Linearization around a metastable state. An altern-
ative to the linearization around a constant uniform state, is the
linearization around somemetastable state of the dynamics ρ∗,
i.e. a state which is such that:

lim
t→∞

δF
δρ(x, t)

∣∣∣∣
ρ=ρ∗

= µ, (36)

where µ is the chemical potential at which the system is main-
tained. A linear equation satisfied by the perturbation around
ρ∗ can be obtained in a similar fashion to the calculation
presented in section 6.2.1. Frusawa presented the general idea
of this calculation in [122], and subsequently applied it to
study the relaxation of a metastable state of densely packed
hard spheres [123].

6.3. Numerical solutions

From the DK equation, one can aim at computing either the
average value of the solution, or second-order moments, such
as two-point, two-time density correlation functions (or, in
other words, dynamical structure factors). A naive numerical
way to solve equation (13) would consist in spatial discretiza-
tion and time integration. However, if not chosen carefully, the
interplay between these two schemes may result in breaking of
the balance between the dissipation and fluctuation terms, and
introduce spurious correlations and unphysical result. For this
reason, the numerical integration of fluctuating hydrodynam-
ics equations is subtle, and has motivated a lot of work in the
computational physics literature.

Some methods are not specific to the DK equation, but
provide good examples of the specific schemes for temporal
integration that may be employed to obtain meaningful res-
ults. For instance, a fluctuating version of the standard lat-
tice Boltzmann method, i.e. a discretization of the Boltzmann
equation for the collisional dynamics, to which a fluctuating
term is added, has been proposed [124]. When it comes to spa-
tially discretized schemes, analogous to finite-element meth-
ods, the main difficulty is that it typically induces unphys-
ical and therefore undesired correlations. This is circumven-
ted by converting the stochastic partial differential equations
into ordinary differential equations obeyed by the cell num-
ber densities, i.e. density fields integrated over the volumes
of the integration cells. Mathematically, this consists in con-
verting the volume integrals of divergence term into sur-
face integrals using the divergence theorem. Even though
the resulting differential equations may resemble the ones

studied in usual finite-element methods, the variables have
very different meaning. This scheme, sometimes called finite-
volume method, has been employed by various authors to
deal with the issues of spatial discretizations [28–30, 125,
126]. The temporal integrators typically mix implicit meth-
ods (for diffusion) and explicit methods (for advection), and
involve stochastic equivalent of Runge–Kutta integrators. The
finite-volume method has also been refined to study the effect
of reactions [32]. Finally, as an alternative, advanced finite-
element methods have also been designed and used in this
context: for instance, the strategy in [127] is to propose a
transformation that subtracts the correlation artifact originat-
ing from the discretization procedure, in order to correct the
final numerical result.

Another challenge in the numerical resolution of fluctuat-
ing hydrodynamics equations lies in the fact that the density,
which is subject to noise, must remain positive. When sim-
ulating a homogeneous and dense system, this issue might
be safely ignored, but it becomes predominant when the sys-
tem might display liquid–gas coexistence, for instance. This
issue was recently addressed by proposing refined discretiza-
tion schemes to numerically integrate the DK equation while
preserving the positivity of the solution [128]. Technically, this
requires the combination between several numerical schemes,
that fulfill the different physical properties such as positivity
and fluctuation–dissipation balance.

Finally, and more recently, the mathematical community
has devoted some effort to analyzing rigorously possible dis-
cretization schemes, both for the original DK equation [129],
and its regularized version [130].

7. Applications

In this final section, I briefly review the different applications
of the DK equation—the bibliographical review does not aim
at being fully exhaustive, but rather at giving a faithful over-
view of the wealth of situations where SDFT is relevant.

7.1. Supercooled liquids

In close link with the context in which Kawasaki proposed
equation (5), the stochastic equation (13) was applied to study
correlations and diffusion in supercooled liquids [131, 132],
and to address the question of the ergodicity breaking pre-
dicted by standard MCT in the low-temperature regime (we
refer the reader interested in this topic to section 3.2, which
contains more details and references).

7.2. Active matter

Active matter refers to non-equilibrium systems whose con-
stitutive agents continuously convert the energy available from
sources in their environment into mechanical work, in order
to swim, self-propel or form complex structures. This line
of research has a significant experimental part (synthesis of
articial microswimmers, observation of emerging collective
phenomena among biological agents...), and has also raised
an important list of questions to be addressed by theoretical
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physicists. Among them, deriving laws for active matter sys-
tems starting frommicroscopic principles has attracted a lot of
attention [133, 134].

In this context, the DK equation appeared as a promising
tool to describe interacting particles. Technically, the difficulty
lies on the fact that active particles usually bear an additional
degree of freedom (typically a head-tail orientation, that gives
the direction of propulsion) to which the translational degrees
of freedom, denoted earlier by r1, . . . ,rN, are coupled. The
DK equation was first derived for run-an-tumble particles in
1D [135], in which the orientational degree of freedom takes
discrete values. Its average version (which is actually closer to
a DDFT description) was used to study the stability of such a
system, and the possibility of motility-induced phase separa-
tion. More recently, proper stochastic equations for 1D act-
ive spins were solved numerically, highlighting the import-
ance of the multiplicative noise term on the flocking trans-
ition [136]. The DK equation for other sorts of active particles
(namely active nematics, active Brownian particles (ABPs)
and active Ornstein–Uhlenbeck particles) were derived rigor-
ously [137–140], and used to compute the pair correlations
between ABPs in the dilute regime [141]. In the meantime,
different authors tried to make active matter enter the usual
classification of stochastic models in the context of critical
phenomena (model A, B, H...) [142, 143], and proposed an
active version of model B, whose relationship to a DK-like
approach was recently discussed [144]. The DK description
of active fluids was also employed to measure entropy pro-
duction [145], to establish links between dissipation, phase
transitions particle correlations [146–148], and to characterize
their structure [149]. Finally, a DK equation for active chiral
particles (i.e. whose activity results in a forced rotation instead
of a forced translation) was derived recently [150].

7.3. Other nonequilibrium systems

The DK equation has also been applied to other types of
non-equilibrium Brownian suspensions, which do not exactly
fall in the ‘active matter’ landscape depicted in the previous
section. For instance, systems made of two species of particles
which are driven by external fields in opposite direction and
that display a laning transition, were studied in [102]. This
is an example where the original DK equation can be exten-
ded to mixtures of multiple species of particles, and allows
one to compute the density correlations between the different
species (within the linear approximation from section 6.2.1).
Similarly, the DK equation has been used to study mixtures of
particles connected to different thermostats [103, 151], in the
range of parameters where such mixtures do not phase separ-
ate (such phase separation may be studied by alternative meth-
ods [152]). Finally, I also mention the emerging topic of mix-
tures of particles with non-reciprocal interactions, which have
also been studied within the DK framework [104, 153, 154].

7.4. Chemotactic particles

In many situations of biological interest, the agents that consti-
tute the system interact via chemical signals, which are often

emitted by the agents themselves. In the language adopted in
this review, this means that the Brownian particles are sub-
mitted to drift forces, which are proportional to gradients of
an auxiliary chemical field. This field is either created or con-
sumed by the particles, depending on whether they play the
role of source or sink, respectively. This problem was first
studied in the framework of SDFT by Chavanis, who set up
the problem and computed the fluctuations within the linear-
ized approximation [45], retrieved usual mean-field model and
introduced the effect of inertia and delayed interactions [155]
and studied some metastable states of the system [156].

Beyond the linearized approximation, the analysis of the
DK equation becomes much more complicated, as stated pre-
viously. However, in the context of chemotactic particles,
the nonlinearities of the DK equation were treated perturb-
atively in the framework of the dynamical renormalization
group [157, 158]. This was achieved by Golestanian et al who
added logistic growth as a feature of the model, and studied
thoroughly phase transitions in this system, and the associ-
ated critical exponents [159–162]. With the same method, the
role of demographic noise was studied recently [163]. Similar
nonlinear equations were also studied using the method of
stochastic quantization [164, 165].

7.5. Charged particles and electrolytes

Among the different systems that may be studied using SDFT,
electrolytes, and more generally charged systems, have attrac-
ted a lot of attention. One of the reasons for this is that the long-
range Coulombic interactions through which ions or charged
particles interact are sufficiently smooth and well-behaved to
allow explicit calculations in Fourier domain. Another reason
is that such systems have been central in the classical theories
of liquids [50, 166], in such a way that many analytical res-
ults are known on their structure and dynamics, which allow
to ‘benchmark’ the results from the DK/SDFT approach.

In this context, Dean and Démery computed from the lin-
earized DK equation the conductivity of dilute and strong
electrolytes (retrieving the classical results by Debye–Hückel–
Onsager) as well as the density correlations between different
ionic species [101]. This framework was more recently exten-
ded to compute the temporal response of electrolytes when
submitted to an external field [167, 168], and the conductivity
beyond the small-field limit [169]. Within the same level of
description, Frusawa studied fluctuations of electrolytes near
a charged plate [170], and Hoang Ngoc Minh et al studied
hyperuniformity that emerges when observing ionic fluctu-
ations in finite volumes [171]. Okamoto recently attempted to
go beyond the linearized DK equation by performing a sys-
tematic diagrammatic expansion, in a rather formal way [172].
Fluctuations in the charge density for a bulk electrolyte were
also studied by numerical resolution of the equations [173].

Going beyond the limit of dilute electrolytes, SDFT was
combined with truncated Coulomb potentials to account for
short-range repulsion between the ions, and was used in order
to compute conductivity [174, 175] and viscosity [176] bey-
ond the dilute limit—the validity of such approximations was
recently discussed [177]. Alternatively, in order to describe
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dense electrolytes, Frusawa proposed a hybrid approach which
combines SDFT with the usual equilibrium DFT approach,
which typically includes density functionals that account faith-
fully for short-range repulsion [178].

Finally, SDFT was also used to study Casimir forces that
may emerge in electrolytes when geometric constraints are
imposed on their fluctuations. Although Casimir interactions
are present in a wide range of quantum and classical sys-
tems [179], in the present case, these fluctuation-induced inter-
actions are related to the long-range nature of the Coulombic
forces. The DK equation, which is an intrinsically fluctuat-
ing description of the dynamics, appears as the right tool to
study them. These effects were studied in different setups: net
neutral plates containing Brownian charges [112, 180, 181],
and more recently, electrolytes submitted to a constant elec-
tric field in a slab bounded by media of different dielectric
permittivities [182–185]. In all these situations, the linear-
ized DK equation provides explicit, analytical estimates of the
fluctuation-induced forces.

7.6. Tracer particles

The DK equation was also used to study the diffusion of a
tagged particle (or tracer particle) within the suspension. More
precisely, among the N particles that constitute the system,
one of them (the particle labeled 1, with no loss of generality)
is assumed to be tagged, whereas the remaining N− 1 con-
stitute a bath to which the tracer is coupled. Technically, the
dynamics of the bath can still be described by a DK equation,
by defining a bath density ρb(x, t) =

∑N
α=2 δ(x− rα(t)), that

excludes the tracer particle. The position of the tracer particle
r1(t) obeys a simple overdamped Langevin equation. One ends
up with a set of two coupled equations: one for ρb, and one for
r1 [113]. While the equation for ρb can be linearized follow-
ing the method given in section 6.2.1, the coupling between ρb
and r1 remains generally nonlinear. The problem can then be
studied perturbatively, assuming a weak coupling between the
tracer and the bath [186].

This method was applied to study the statistics of the
position of the tracer, as well as its correlations with the
bath of particles, in different settings: in the case where the
tracer is driven by some external force in a bath of pass-
ive particles [113, 187, 188] (a situation related to active
microrheology experiments), in the case where the tracer is
self-propelled [189] or the bath is made of self-propelled
particles [190], when the tracer is a tagged ion in an electrolyte
[177], in the situation where the tracer is coupled to a mixture
of particles connected to different thermostats [103] or with
non-reciprocal interactions [104], in the presence of confine-
ment [191], and finally when the tracer is odd-diffusive [192].
The long-distance decay tracer-bath correlations were also
studied within the framework of the DK equation [193, 194].

7.7. One-dimensional diffusive systems

One-dimensional systems of diffusing and interacting
particles plays a special role in statistical mechanics. First,
from a technical point of view, this particular dimensionality

allows the derivation of a wealth of exact results, by relying on
mappings between different classes of models, and on specific
mathematical methods (matrix ansatz, Bethe ansatz, integrable
systems, random matrix theory etc). Second, in the particular
situation where the pair interactions between the particles are
sufficiently hard to prevent them from bypassing each other,
macroscopic observables (such as the current of particles) and
properties associated with tracer particles exhibit anomalous
scalings, typically subdiffusive, which are the signature of the
very strong geometric constraints imposed on the system. This
situation is generally referred to as ‘single-file diffusion’.

In a series of papers, Ooshida et al employed a DK
approach to characterize two-point correlations and cooper-
ativity effects in single-file diffusion with hardcore repul-
sion [195–198] (these studies are actually closer to a one-
dimensional application of MCT [199]). These results also
gave insight into higher-dimensional systems [200, 201].

More recently, different authors relied on the DK formal-
ism to study one-dimensional gases with longer-ranged inter-
actions. I mention the ‘active Dyson gas’, referring to run-and-
tumble particles with logarithmic interactions and an external
confinement, for which the stationary density was computed
[202]; ranked diffusion (particles on a line that undergo a drift
proportional to their rank), for which the equation for the dens-
ity was mapped onto a Burgers equation, that allowed the
computation of the steady density and the joint distribution
of positions [203, 204]; the Riesz gas, where particles interact
with a potential V(r)∝ |r|−s (s> 0), or the Dyson gas, where
particles interact with a logarithmic potential, for which the
fluctuations of the integrated current and of the position of
a tagged particle were computed explicitly in quenched and
annealed settings [205, 206].

7.8. Machine learning

Interestingly, the DK equation has recently been used in the
context of machine learning. Training a neural network to per-
form some tasks, such as speech or image recognition, consists
in finding optimal values for the numerous parameters at stake,
to minimize error and maximize accuracy of the predictions.
The parameters in the neural network may be seen as particles,
and the cost function, with respect towhich the problem should
be optimized, may be seen as the interaction between particles.
This formal mapping allows one to study the training of the
network as the evolution of the particles within this potential,
and to rely on the results from nonequilibrium statistical mech-
anics and interacting particle systems [207].

7.9. First-passage problems

Finally, viewing the density of particles ρ as a stochastic
process, one can compute its first-passage properties. For
instance, this point of view was adopted to study nucleation
phenomena in colloidal suspensions [208]. More recently, Liu
et al considered the Kramers problem associated to a system
obeying a DK-like equation, and computed the mean first-
passage time to a potential barrier [209].
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8. Conclusion and perspectives

This review has examined the DK equation, also referred to
as SDFT, highlighting its origins, fundamental principles, and
broad applicability. Initially developed to describe the dynam-
ics of interacting Brownian particles, SDFT has since expan-
ded to become a versatile tool in statistical mechanics. I have
explored how this framework connects with other theories,
such as fluctuating hydrodynamics and MCT, underscoring
its potential to provide a unified approach to various complex
systems. Additionally, the article has addressed several exten-
sions of the original DK equation, including considerations of
hydrodynamic interactions, inertial effects, and the dynamics
of active matter. These advances demonstrate the equation’s
robustness in modeling diverse nonequilibrium phenomena,
from supercooled liquids to active and driven systems. By cap-
turing both the deterministic and stochastic aspects of particle
behavior, SDFT offers a comprehensive framework for under-
standing and predicting the intricate dynamics of complex flu-
ids. As research continues, the application of SDFT is likely
to expand further, providing deeper insights into the behavior
of increasingly complex systems in physics, chemistry, and
beyond.

However, significant challenges remain in the domain.
One of the primary difficulties is the treatment of nonlin-
earities and multiplicative noise within the DK equation,
which complicates both analytical and numerical solutions.
Moreover, ensuring the well-posedness and stability of solu-
tions, particularly in systems with strong interactions or
inhomogeneities, is an ongoing concern. The need for more
efficient computational methods that can handle the intric-
ate dynamics and high dimensionality of real-world systems
is also pressing. Additionally, extending SDFT to account
for more complex interactions presents a formidable chal-
lenge. Addressing these issues will be crucial for advancing
the theory and broadening its applicability to new areas of
research.
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