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The formation of condensates is now considered a major organizing

principle of eukaryotic cells. Several studies have recently shown that the

properties of these condensates are affected by enzymatic reactions. We

propose here a simple generic model to study the interplay between two

enzyme populations and a two-state protein. In one state, the protein forms

condensed droplets through attractive interactions, while in the other state,

the proteins remain dispersed. Each enzyme catalyses the production of one

of these two protein states only when reactants are in its vicinity. A key

feature of our model is the explicit representation of enzyme trajectories,

capturing the fluctuations in their local concentrations. The spatially

dependent growth rate of droplets naturally arises from the stochastic

motion of these explicitly modelled enzymes. Using two complementary

numerical methods—(i) Brownian dynamics simulations and (ii) a hybrid

method combining Cahn–Hilliard–Cook diffusion equations with Brownian

dynamics for the enzymes—we investigate how enzyme concentration

and dynamics influence the evolution with time and the steady-state

number and size of droplets. Our results show that the concentration and

diffusion coefficient of enzymes govern the formation and size-selection of

biocondensates.

1. Introduction
Recent developments of imaging techniques below the diffraction limit have

shed new light on structural biology at the mesoscale. A major breakthrough

came with the discovery of sub-micrometer membraneless compartments

within cells [1,2], also called biocondensates. Recent experiments have revealed

that at least 18% of all proteins may be part of condensates [3]. The physical

mechanism behind the formation of mesoscale liquid phases in cells has gained

much attention in recent years [4,5].

The presence of coexisting droplets in cells suggests that non-equilibrium

mechanisms lead to the selection of a specific mesoscale condensate size, ar-

resting Ostwald ripening [3]. Continuous descriptions relying on Flory–Hug-

gins free energy have been designed to account for the formation of chem-

ically active droplets [6–10]. In these models, active reactions that break de-

tailed balance, and passive ones that respect detailed balance are allowed, with

rates that are different inside and outside the droplets [5,11]. These models,

solved at a mean-field level, predict stationary states where several droplets

coexist. The role of chemical reactions in the formation of biocondensates is

consistent with several experimental observations [12–15]. Specifically, post-

translationalmodifications, namely enzyme-catalysed reactions that change the

chemical state of a protein, can modulate the strength of effective interactions

between proteins, and therefore either promote or oppose the formation of bio-

condensates [16–18]. For instance, two enzymes catalysing opposite reactions

©2025 The Author(s) Published by the Royal Society. All rights reserved.
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(phosphorylation and dephosphorylation) were correlated to the dynamics of membraneless organelles (e.g. P granules in

Caenorhabditis elegans embryos [12], and postsynaptic condensates in mammalian neurons [15]). Interestingly, chemical reactions

are now used as a tool to control the properties of artificial condensates [19] within new synthetic biology setups, or to act on

pathologically deficient condensates [20,21].

Enzymes catalysing modifications of condensate proteins may be key controlling agents of the condensate properties [22,23].

In particular, as condensates are non-equilibrium structures, kinetics of enzymatic reactions and transport properties of enzymes

should matter. In this context, several questions emerge. The concentration of each type of enzyme is governed by the genetic

metabolism, the kinetics of which leads to a variety of complex dynamical patterns at the heart of systems biology [24]. In the field

of biocondensates, how does the enzyme concentration qualitatively and quantitatively control the structural properties of the

system? Moreover, active mechanisms are known to dramatically affect the diffusion of enzymes towards or within the conden-

sate. What is the influence of the effective diffusion coefficient of enzymes on the phase separation process at play in the formation

of biocondensates?

To address these questions, we propose to model the space and time evolution of biocondensates generated by attractive in-

teractions between proteins, and modulated by chemical reactions mediated by enzymes. Models describing phase separation

and chemical kinetics using Flory–Huggins theory and dynamical equations rely on an artificial density-dependent kinetic rate

[5,8]. In contrast, we adopt here a more realistic approach. Enzymes are explicitly described by discrete Brownian particles. These

enzymes catalyse the switch of a protein from a condensation-prone state, favourable to droplet formation, to a dispersion-prone

state. In our model, these biochemical reactions only occur when enzymes are near the two-state proteins. We consider two types

of enzymes, the first one catalysing a reaction favouring the dispersion-prone state of the protein, and the second one catalysing

the opposite reaction leading to the condensation-prone state.

We resort to two complementary numericalmethods to explore the influence of enzyme concentration and dynamics on biocon-

densates, in two-dimensional (2D): (i) reactive all-particle Brownian dynamics simulations (these will be called ‘full BD’ in what

follows), and (ii) a hybrid method (HM) based on Cahn–Hilliard–Cook diffusion equations for the droplet material (the two-state

protein) and Brownian dynamics for the enzymes. Within both simulation schemes, the trajectories of enzymes are explicit. The

second method allows us to check the transferability of full Brownian dynamics results to more standard mean-field models of

phase transition dynamics, and to study larger system sizes. With both methods, the concentration and the diffusion coefficients

of enzymes are shown to influence the number and size of condensates at steady state. We account for the time evolution of the

size of condensates in full BD with a simple analytic model.

2. Models
We investigate the behaviour of a binary mixture of A and B proteins, which undergo interconversion reactions A⇋ B, and where

B proteins attract each other and may form droplets, representing the biocondensates. The reactions A→ B and B→A are, re-

spectively, catalysed by enzymes called EA→B and EB→A. We assume that these reactions do not take place without enzymes. These

enzymes are explicitly represented, but with a highly coarse-grained representation, as disks. Note that these two reactions are

coarse-grained representations of processes that involve hidden chemical reactions. Indeed, in a biological context, one of these

two reactions would be coupled to a favourable secondary reaction, such as ATP hydrolysis. Moreover, as for all catalysts, an

enzyme should facilitate the reactions in both ways (in our case, A→ B and B→A). For each one of the two reactions catalysed by

EA→B and EB→A enzymes, we consider that the reverse reaction is much less likely than the forward reaction, and is thus neglected

(this assumption is justified in appendix A). We restrict ourselves to 2D systems with periodic boundary conditions. Therefore, all

quantities subsequently defined and mentioned are in 2D.

In full Brownian dynamics, A and B proteins are explicitly represented. The number of enzymes is varied from one simulation

to another, and these particles are replaced if necessary by non-catalysing neutral particles C to keep the total number of particles

N, and thus the overall surface fraction, constant. We denote by Si(t) ∈ {A,B,C,EA→B,EB→A} the species of particle i at time t. The

positions of particles satisfy the overdamped [25]:

dri
dt

=−
Di

kBT

∑

j≠i

∇USi ,Sj (|ri − rj|) +
√
2Di�i(t), (2.1)

where Di is the bare diffusion coefficient of particle i, and �
i
(t) is a white noise such that

⟨
�i,�(t)

⟩
= 0 and

⟨
�i,�(t)�j,�(t′)

⟩
=

2Di�ij����(t − t′) for any components �, � = x or y. All particles interact through a repulsive Weeks–Chandler–Andersen (WCA)

potential [26], except B proteins that interact through a Lennard–Jones (LJ) potential. Note that these WCA and LJ potentials are

generic forms of the potential of mean force (or effective potential) between the particles, and they thus account for the effect of

the surrounding environment. All particles have the same diameter �, which sets the length scale. Similarly, the surface densities

of all the species are measured in units of �−2. All particles have the same diffusion coefficient Di =D0. The WCA potential reads

USi ,Sj (rij) =

⎧
⎪
⎨
⎪
⎩

4"′
⎡
⎢
⎣
( �

rij

)
12

− ( �

rij

)
6
⎤
⎥
⎦
+ "′ if rij ≤ 21∕6�,

0 otherwise,

(2.2)
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Figure 1. Schematic representation of the principles of the two numerical methods: (left) full BD, (right) hybrid method (HM) based on Cahn–Hilliard–Cook diffusion
equations for the droplet material, and Brownian Dynamics for the enzymes, on the right. The dotted circles (left) represent the area centred around each enzymes, of
radius rcut, and in which reactions happen.

for any couple Si,Sj except Si = Sj = B, where rij is the distance between i and j. We take "′ = 10kBT. The Lennard–Jones potential

between B proteins includes an attractive part:

UBB(rij) = 4"
⎡
⎢
⎣
( �
rij
)
12

− ( �
rij
)
6
⎤
⎥
⎦
, (2.3)

for which we set a cutoff for rij ≥ 2.5�. The depth of the LJ potential energy well is " = 3kBT. Equivalently, the reduced temper-

ature T⋆, which determines the phase behaviour, is equal to kBT∕" = 1∕3 (i.e. below the critical temperature for vapor–liquid

phase equilibrium of the 2D Lennard–Jones fluid, T⋆
c = 0.52 [27]). In these conditions, B proteins may form phases of contrasting

densities.

Reactions are introduced in the algorithm through a random telegraphmodel [28], parametrized by a reaction time 1∕k. Theses
reactions are only allowed in the vicinity of the enzymes [29,30]: when a protein of type A (resp. B) is at a distance smaller than a

cutoff distance rcut from the centre of the EA→B enzyme (resp. EB→A), it becomes B (resp. A) with rate k (figure 1). Therefore, the local

reaction rate is coupled to the random trajectory of the Brownian enzymes. The relationship of our model with typical biological

situations is specified in appendix A, which specifies why our model is equivalent to a mixture of two enzymes, respectively,

catalysing a passive and an active reaction.

In the hybridmethod, the positions of enzymes evolve through the overdamped Langevin equation of Brownian dynamics, and

are coupled to a binary A–B fluid evolving through a continuous diffusion equation [31]. The fluid is characterized by the order

parameter  (r, t) = �A − �B defined as the difference in surface fraction of species A and B (A and B cover all space, so �A + �B = 1

and thus −1≤ ≤ 1). The free energy of the A–B fluid is given by a standard Ginzburg–Landau density functional [31], as shown

in equation (B 2) in appendix B. The parameters are chosen so as to favour phase separation. The dynamics of the A–B fluid is

controlled by the Cahn–Hilliard–Cook standard equation, with the addition of reactive fluxes that take place in the vicinity of each

Brownian enzyme (figure 1 and equation (B 8) in appendix B).

Details on the methods, and values of the parameters are given in appendix A for full BD, and appendix B for the hybrid

method.

3. Arrested phase separation and emergence of non-equilibrium structures
As a reference, we consider a system containing only EA→B enzymes, starting with an initial situation with only A proteins in the

system. In this situation, a phase separation occurs with the uninterrupted growth of droplets of B proteins, as seen both in full BD

and in hybrid simulations figures 2-1 and 2-3. First, small droplets of B proteins are formed near the EA→B enzymes, and second,

the largest of these droplets of Bmaterial grow at the expense of the smallest, by Ostwald ripening or by coalescence. Coalescence

events are depicted in the plain grey circles of figures 2-1 and 2-3. In full-BD simulations, a single droplet of B protein is observed

at stationary state. One difference between the results of the two simulation methods is that in full BD, the EA→B enzymes continue

to diffuse freely within the simulation box, even after some droplets have nucleated, whereas in the hybrid method, they remain

attached to the B droplets.

In the presence of both types of EA→B and EB→A enzymes, droplet growth is interrupted, as observed in both simulation schemes.

Indeed, EB→A enzymes, by converting B proteins into A ones, either limit the growth (as depicted in the dash-dotted grey circles of

figures 2-2 and 2-4), or completely destroy the droplets (as depicted in the dashed grey circles of the same figures). As we proceed

to show, the balancing effect of the two types of enzymes results in the selection of a droplet size.
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Figure 2. Droplet growth under the effect of active enzymatic reactions. In all cases, discrete particles are represented by small disks: EA→B enzymes are coloured in
red, EB→A enzymes are coloured in black. (1 and 2) Snapshots from trajectories obtained with full BD, at successive times. A proteins are coloured in blue, B proteins are
coloured in green, neutral particles C are coloured in orange with the concentrations of enzymes equal to �A→B = 1.6 × 10−3 (and �B→A = 1.6 × 10−3 in 2). (3 and
4) Snapshots obtained with the hybrid method. The continuous phase is coloured in blue as it plays the role of the A-rich phase, while the discontinuous B-rich phase is
coloured in green. Here with �A→B = 8.8 × 10−5 (and �B→A = 2.8 × 10−3 in 4). (1 and 3) Reference system with EA→B enzymes only that leads to the uninterrupted
growth of droplets (note that the trajectory of the HM method is not at stationary state yet). (2 and 4) System containing EA→B and EB→A enzymes that leads to the
interrupted growth of droplets. Grey circles are drawn to attract attention to certain noteworthy events, which are detailed in the text.

4. The concentration of enzymes controls the size and number of droplets
As shown in figure 3 left from full-BD simulations, at a fixed concentration �A→B of EA→B enzymes, a non-zero concentration of EB→A

enzymes leads to the formation of droplets that reach a finite size at stationary state. Moreover, the size of these droplets, mea-

sured by the number of B proteins in a dropletNBD, decreases as the concentration of EB→A enzymes increases. Note that droplets

are only made of B particles, so that the area of a droplet is directly proportional to the number of B particles in this droplet. In

all cases, the size dispersity of the droplets evolves with time. We find that the standard deviation of droplet size evolves linearly

with the average size of the droplets. This result is confirmed with the HM simulations. At stationary state, the size distribution

obtained with full-BD simulations is exponential. It contrasts with alternative models of active emulsions, which predict a Gaus-

sian distribution [32,33]. As previously stated, in the absence of EB→A enzymes (�B→A = 0, blue plot), we observe the growth of a

unique droplet of B proteins (though the equilibrium state is not reached here, as the simulation is too short). The same general

behaviour is captured by the hybrid method, as shown in figure 3 right, where we plot the evolution of the average size of B

droplets as a function of the concentration of EB→A enzymes, obtained from both numerical methods, on a logarithmic scale. The

concentration of EA→B is 10 times smaller in the HM than in full BD, leading to quantitative differences in the results. Note also

that in the HM, a droplet is a cluster of contiguous cells where the concentration of B dominates, andNHM is proportional to the

number of contiguous cells, as detailed in Appendix B. In contrast, a droplet in full BD is a cluster of more than 5B proteins, as

detailed in Appendix A.
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Figure3. Enzymes arrest droplet growth. Left: averagenumber ofB proteins in adroplet obtainedby full BDas a functionof time for increasing values of the concentration
�B→A of EB→A enzymes. Right: average size of droplets at stationary state obtained by full BD and by the hybridmethod as a function of the concentration of EB→A enzymes,
in log-scale. In full BD, the concentration of EA→B enzymes is �A→B = 1.6 × 10−3, and the stationary state is assumed to be reached in the interval [1800, 2400] Dt

�2
. In

the HM, the concentration of EA→B enzymes is�A→B = 1.2 × 10−4, and the stationary state is assumed to be reached in the interval [5 × 104, 12.5 × 104]t.

Figure 4. Non-monotonic influence of the enzyme concentration on the number of droplets. Left: average number of droplets per EA→B enzyme, measured by the ratio
of the concentration of droplets �d to the concentration �A→B of EA→B enzymes, as a function of time, obtained by full BD for increasing values of the concentration
�B→A of EB→A enzymes. The inset is the prolongation of the curve with �B→A = 0 on the interval [2400, 20 000] Dt

�2
. The y scale is the same as in the main plot. Right:

average number of droplet per enzyme EA→B at stationary state obtained by full BD and by the hybrid method as functions of the concentration �B→A of EB→A enzymes.
In full BD, the concentration of EA→B enzymes is �A→B = 1.6 × 10−3, and the stationary state is assumed to be reached in the interval [1800, 2400] Dt

�2
. In the HM, the

concentration of EA→B enzymes is�A→B = 1.2 × 10−4, and the stationary state is assumed to be reached in the interval [5 × 104, 12.5 × 104]t.

As the presence of EB→A enzymes interrupts Ostwald ripening, multiple droplets may coexist at stationary state, whose number

depends on the concentration �B→A of EB→A enzymes, as shown in figure 4 left from full-BD simulations at a fixed concentration

�A→B of EA→B enzymes. In the absence of EB→A enzymes (�B→A = 0, blue plot), we expect a ratio �d∕�A→B of 0.125 at long times, as the

number of EA→B enzymes is 8 in the simulation box for this �A→B value, and a single droplet is expected at equilibrium (although

the simulation time here is too short to reach this state). In all other cases, a stationary state is reached, with a mean number of

droplets per EA→B enzyme larger than 0.125, indicating the formation of multiple droplets. In some cases, the number of droplets

per EA→B enzyme exceeds 1. Interestingly, both numerical methods show a non-monotonic evolution of the number of droplets

per EA→B enzyme, with a maximum appearing at roughly the same EB→A enzyme concentration (but for different values of �A→B),

as shown in figure 4 right.

This non-monotonic behaviour arises because, at low concentrations of EB→A enzymes, the number of droplets is expected to

increase with �B→A from an initial value equal to 1 at �B→A = 0 (equilibrium state). Indeed, as soon as some EB→A enzymes are in-

troduced, the production of new A proteins enables the nucleation of new droplets in the vicinity of EA→B enzymes. However,

in the limit of high EB→A enzyme concentration, we expect the immediate destruction of droplets after nucleation, resulting in

the disappearance of all droplets. As a result, the number of droplets passes through a maximum for an intermediate value of

�B→A. There are quantitative differences between both simulation results at large �B→A values, where the decrease of the number

of droplets is less pronounced with the hybrid method. With this method, B-rich droplets are always physically connected to a

least one EA→B enzyme. This connection stabilizes droplets down to small sizes, even if the droplet encounters an EB→A enzyme.

In full-BD simulations, EA→B enzymes may diffuse away from droplets, thus, making these condensates more likely to be fully

destroyed under the influence of the reactions catalysed by an EB→A enzyme.

In the range of parameters explored by full BD, it appears that the concentration of EA→B enzymes does not affect the droplet

size (see figure 5 left), while an increase in the concentration of EB→A enzymes leads to a decrease in droplet size, as previously
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Figure 5. Influence of the concentration of EA→B enzymes. Left: average number of B proteins in a droplet obtained by full BD as a function of time for several values of
the concentration �B→A of EB→A enzymes, and several values of the concentration �A→B of EA→B enzymes. The results obtained by equation (5.1) are displayed in plain
black with parameters � = 2.7 and � = 900. Right: average size of droplets at stationary state obtained by the hybrid method as a function of the concentration of
EA→B enzymes for increasing values of the concentration�B→A of EB→A enzymes, in log-scale.

Figure 6. Influence of the diffusion coefficient of enzymes on the droplet size. Left: average number of B proteins in a droplet at stationary state obtained by full BD for
several values of the diffusion coefficient of EB→A and EA→B enzymes, as functions of the concentration�B→A of EB→A enzymes. The results obtained by equation (5.1) are
displayed in dashed lines with parameters� = 2.7 and � = 900. Here �A→B = 1.6 × 10−3. Right: average size of droplets at stationary state obtained by the hybrid
method as a function of the concentration of EA→B enzymes for several values of the diffusion coefficient of enzymes EB→A and EA→B , as functions of the concentration
�B→A of EB→A enzymes, in log-scale. Here,�A→B = 2.4 × 10−4.

mentioned. This suggests that the droplets grow independently from each other around each EA→B enzyme, until they encounter

an EB→A enzyme. The results from the HM, displayed in figure 5 right, qualitatively follow the same trend, but quantitatively

differ, with the size of droplets increasing more rapidly as a function of the concentration of EA→B enzymes (note the logarithmic

scale of this plot). This is likely due to the fact that the regime of EA→B enzyme concentration explored using the hybrid method

differs from that examined in the full-BD simulation (the concentrations of EA→B are significantly lower with the HM). This is made

possible because the HM allows for the study of much larger systems than the full BD. All in all, our results show that the size

of the droplets are tuned by enzyme concentrations. Note that we do not expect a perfectly quantitative agreement between both

models, as the A/B binary fluid in the HM differs the corresponding ternary mixture in full-BD simulations (A, B and implicit

solvent). Although they share many similarities with binary fluids, ternary ones also present new phenomenology [5,33].

5. Enzyme diffusivity affects the size of condensates
When they are chemically active, the effective diffusion coefficient of enzymes can actually strongly differ from their equilibrium

value, typically given by the Stokes–Einstein relation. This idea originates from the numerous sets of measurements in the bio-

physical literature, together with theoretical explanations which aim at relating the chemical activity of the enzyme with their

diffusivity [34–36].

The diffusion coefficient of particles is a parameter of Brownian dynamics simulations, and can be easily modified. Here, this

value for EA→B and EB→A enzymes is either enhanced or decreased compared with the value D0 previously used, keeping the same

size for all BD particles, and the dynamic properties of all other species unchanged.

As it appears in figure 6, the average droplet size is strongly influenced by the diffusion coefficient of enzymes: the faster are

the enzymes, and the smaller are the droplets. This behaviour is observed in both simulation methods. This trend may be related

to the encounter time between enzymes and droplets: decreasing this time increases the effective rate of interconversion of A/B

species.
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Wepropose inAppendix C a simple analytic model that accounts for this behaviour. The assumptions of this model are: (i) each

time a droplet encounters an EB→A enzyme, it is instantaneously destroyed, (ii) the encounter times between droplets and EB→A

enzymes follow an exponential probability distribution, (iii) the encounter time te between a droplet and a single enzyme only

depends on the diffusion coefficients of both entities. With these assumptions, we obtain the evolution with time of the average

number of particles per droplet ⟨N⟩:

⟨N⟩ = c
te

S�B→A

(1 − exp (
−tS�B→A

te
)) , (5.1)

with S the surface of the simulation box, c a constant that represents the influx of protein into a droplet. The encounter time te is

assumed to be inversely proportional to the sum of the diffusion coefficients of the droplet Ddp and of the EB→A enzyme DEB→A
:

te =
�

(DEB→A
+Ddp)

. (5.2)

The full-BD simulation data shown in figure 5 left and 6 left are successfully fitted by equation (5.1), provided that we take

c=�
√

S�B→A

te
, (5.3)

Ddp =
D0

⟨N⟩t→∞
. (5.4)

The dependence of c with S�B→A is consistent with the fact that the presence of EB→A enzymes increases the amount of A proteins

in the system. A higher concentration of A increases the influx of proteins in the droplet. The dependence of Ddp with the size of

droplets at stationary state is justified by the fact that the diffusion coefficient of the centre of mass of an assembly of N Brownian

particles is inversely proportional to the number of particles (This result can be analytically obtained using the samemathematical

analysis as in the Rouse model of polymers. It is similar to compute the long-time diffusion coefficient of the centre of mass of a

polymer [37]). The agreement of this simple analytic model with full-BD simulation results proves the major role played by the

encounter time between a droplet and an EB→A enzyme to control the size of droplets. In the case D= 0.2D0, the comparison of

simulation results with the model would work better with a slightly higher diffusion coefficient of the enzymes. Interestingly,

this is consistent with calculations of the mean square displacements of the enzymes in these cases, which show a slight increase

of the diffusion coefficient. We think that the interface between the two phases where the enzymes are located may push the en-

zymes and lead to self-propulsion. In previous studies, we have already characterize similar behaviours in a model of colloidal

particle propelled by a finite size domain of Lennard–Jones particles [29,30]. Despite this unusual behaviour, which we have to

characterize in more details in future works, the ability of the model to fill all the full-BD simulation data is remarkable.

The HM also shows that larger enzyme diffusivity leads to smaller droplet sizes. Despite the qualitative agreement, the analyti-

cal model does not quantitative account for the results obtained in the regime of large systems, describedwith theHM.Morevover,

from the dynamics point of view, the hybrid simulations show two singularities that explain this discrepancy with the analytical

model. First, the mass transport of the A/B fluid does not limit the rate at which the droplet grows, as the droplet interface fol-

lows the motion of the EA→B enzymes: in all snapshots, we observe that the EA→B particles remain in contact with this interface.

Second, a first investigation of the mean squared displacements of the enzymes suggests a strong self-propulsion in this range of

parameters, which may dominate normal diffusion. Finally, in the HM model, some enzymes are found inside droplets, which

reflects the enzyme composition of real biocondensates, but that we do not account for in the simple analytical model. Indeed,

within our models, the enzyme is not soluble in the droplets, and therefore no enzyme should be found in droplets at equilibrium.

In non-equilibrium conditions, they can be kinetically trapped: an enzyme in the central region of a droplet does not experience

any force, as it is surrounded by a homogeneous and isotropic phase. In the HM model, as droplets may be rather large, kinetic

trapping is more likely.

6. Conclusion
In this work, we developed a simple generic model to study the interplay between two enzyme populations and a two-state pro-

tein. It is well known that biological systems regulate properties at the sub-cellular scale by controlling the spatial and temporal

distribution of enzyme density. Enzymes selectively determine how biological components are modified and can thereby alter the

physical interactions between their substrate proteins.A significant portion of enzyme-catalysed reactions are coupledwith highly

exergonic processes, such as ATP hydrolysis, allowing active reactions to drive product molecules or mesoscale condensates far

from equilibrium.

Here, we model a two-state protein, assumed to be the substrate of two distinct enzymes. In one state, the protein (state B)

forms condensates through attractive interactions, while in the other state (state A), the proteins remain dispersed. Each enzyme

catalyses the production of one of these two protein states, promoting either protein clustering (EA→B enzyme) or dispersion (EB→A

enzyme). Using this simple model, and using two different simulation methods at different scales, we have demonstrated that

enzyme concentration and diffusion coefficients govern the size and number of biocondensates (droplets of B protein). A key

feature of our model is the explicit representation of enzyme trajectories, capturing the fluctuations in their local concentrations.

This brings fundamental differences with description that do not directly include enzymes. As discussed in a recent review [5],

in binary A∕B systems, the presence of passive reactions interconverting A and B suppresses phase separation. In order to cre-

ate heterogeneity and phase separation in continuous models of active droplets, the addition of an active reaction is necessary,
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but it is not sufficient. The passive and active reactions need to be facilitated in distinct regions of space; for instance, the active

reaction may be facilitated inside the droplets, while the passive reaction is facilitated outside. This is achieved through specific

dependencies of the reaction rates on protein density. By explicitly representing enzymes, the aforementioned conditions are not

requested in the form of a density-dependent rate, as it naturally emerges from the stochastic motion of the explicitly modelled

enzymes. In other words, if we extract a subpart of the system trajectory of duration similar or smaller than the enzyme diffusion

time scale, the system is naturally separated into regions where the active reaction governs the chemical dynamics of the system

(the relaxation of chemical potentials), and regions where the passive reaction governs the chemical dynamics.

Our minimal model suggests key design principles for enzymatic systems that regulate biocondensate properties. It opens the

way to further studies integrating concepts from systems biology (networks of enzymatic reactions), macromolecule transport

phenomena in biological fluids, to the dynamics of liquid–liquid phase separation at mesoscales. Introducing an explicit repre-

sentation of both enzymes and droplet forming particles, the full-BD simulation method gives access to quantities that are not

accessible through mean-field formulations. In particular, future works shall compare density fluctuations as a result of active

chemical reactions, which are naturally localized in a phase, with density fluctuations in homogeneous systems.
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Appendix A. All-particle Brownian dynamics simulations (full BD)
A.1. Methods and simulation parameters
Weconsider two-dimensional systemswith periodic boundary conditions,which containA andBproteins,EA→B andEB→A enzymes

and CN neutral particles, also referred to as crowders. The total number of particles is fixed, ensuring the same overall density.

Specifically, the number ofA and B proteins is fixed, while the number of EA→B and EB→A enzymes varies. The total particle number

is adjusted using neutral particles CN. All particles have the same diameter �, which is used as the unit length.D0 denotes the bare

diffusion coefficient of the particles, and �2∕D0 is used as a unit time. In all cases, the simulation box, with a length lbox = 70�
contains a concentration of enzymes and crowders �A→B + �B→A + �C = 0.01, and a concentration of A and B proteins, �S = 0.1. This
corresponds to 50 enzymes and crowders, and 500 A/B proteins. The integration time step of the overdamped Langevin equation

is �t= 1 × 10−4�2∕D0 in all cases.

The conversions of A and B proteins take place whenever they are within a distance rcut to the centre of an enzyme (rcut = 5

is taken). More precisely, at each time step, in the vicinity of an enzyme EA→B (resp. EB→A), an A protein may transform into B at

rate kA→B (resp. a B protein may transform into A at rate kB→A). All the other reverse reactions are neglected. In all simulations, we

assume that the reactions are fast compared with the diffusion characteristic time scale, and we take kA→B = kB→A = 10. The choice

of the integration time step ensures that kA→B�t and kB→A�t remain much smaller than 1.

The characterization of the size and of the number of droplets is performed using a Voronoi cell analysis. We found that the

distribution of the size of Voronoi cells around B proteins is bimodal, which allows us to define a threshold belowwhich a particle

can be tagged as being part of a droplet. The square root of this threshold, 2�, is taken as the distance criteria to identify particles

belonging to the same droplet. A droplet is then considered a group composed of more than 5B particles. From such analysis, the

distribution of the number of droplets, and of the number of particles per droplet is computed, as well as moments of these distri-

butions over time, and at stationary state. In each case, the results are averaged over 50 independent realizations of the Brownian

trajectories.

A.2. Interpreting our model: passive and active reactions in living systems
In this section, we aim at clarifying how the two kinds of chemical reactions described by our model can be considered as a couple

of passive and active reactions. The term active has been used in the context of cellular metabolism for more than half a century

[39,40]. Froma qualitative point of view, in biological systems, some reactions, referred to as active reactions, maintain the system far

from equilibrium: under the influence of an active reaction A⇌ B, the evolution of the system composition does not relax towards

chemical equilibrium (�A =�B). Instead, at a specific enzymatic site, the A⇌ B reaction is coupled to another process associated

with a negative free energy (that we shall call chemical drive [6], noted ��). This energy source may be another chemical reaction

(such as ATP hydrolysis), but also the transport of particles associated with electrostatic or osmotic works [41]. As a consequence

of this coupling, the evolution of the system under the effect of the active reaction A⇌ B drives the system to a non-equilibrium

state characterized by �B − �A =��.
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In biological systems, the same particles may be implicated in both passive and active reactions. Nevertheless, these two re-

actions are catalysed by distinct enzymes. For instance, a phosphatase (a passive enzyme) catalyses the passive hydrolysis of a

phosphate group bound to a protein residue,while a phosphorylase (an active enzyme) catalyses the reverse activephosphorylation

of the same protein residue, coupling this protein modification to ATP hydrolysis [17,42].

From amicroscopic point of view, activity breaks the detailed balance rules that constrain the transition probabilities at play in

these reactions [6,11]. To clarify this point in the context of Brownian dynamics simulations, we consider two configurations C and

C′ of respective energies E(C) and E(C′), at two successive time steps (i.e. at times t and t + �t). These configurations only differ by
the state of one particle : C changes to C′ with a probability kA→B�t as a result of one iteration of the forward A→ B reaction, while

C′ changes to Cwith a probability kB→A�t.
When the system is at equilibrium, interconversions take place through a passive pathway. The passive conversion rates k

p

A→B

and k
p

B→A
obey the detailed balance condition,

k
p

A→B

k
p

B→A

= exp{−�[E(C′) − E(C)]}, (A 1)

where � = (kBT)−1. In non-equilibrium systems, alternative active pathways may exist. In this case, the active conversion rates ka
B→A

and ka
A→B

break the detailed balance condition,

ka
A→B

ka
B→A

= exp{−�[E(C′) − E(C) + ��]}. (A 2)

The chemical drive �� quantifies the deviation from equilibrium. Starting from these rules, we then explicit the specific regime

corresponding to our model, with EA→B enzymes catalysing only the forward reaction A→ B, and EB→A enzymes catalysing only

the reverse reaction.

The energies E(C) and E(C′) are a combination of two terms, (i) the sum of interparticle interactions, which depends on the

particle coordinates and (ii) the intraparticle (or internal) free energy. We work in a regime where the difference in the internal

free energies of theA and B species aremuch larger than kBT. This quantity can be identifiedwith the standard reaction free energy

for A⇌ B, which has been estimated for many biological reactions and whose absolute value usually lies in the range 10–20 kJ

mol−1, i.e. 5–10 kBT [43]. This leads to several simplifications.

First, when a reaction occurs, the change in internal free energies is much larger than the contribution of interparticle interac-

tions,which can thus be ignored. The energydifference then readsE(C′) − E(C) =wB − wA =�w, wherewA andwB are the respective

internal free energies of particles A and B.

If the passive reaction is favoured in the A→ B direction, then �w≪−kBT, exp{−�[E(C′) − E(C)]}≫ 1 and k
p

B→A
≪ k

p

A→B
. As we

proceed to show in the next appendix section, in such case the B→A reactions can be neglected. In our model, this would then

correspond to the rules governing the transitions of A and B particles in a region close to the EA→B enzyme, which could then be

considered a passive region.

Moreover, in biological systems, the active and passive pathways drive the system composition in opposite directions. In other

words, the chemical drive is large enough to reverse the direction of the passive reactive flux. In the case of ATP hydrolysis as a

source of chemical drive, �� = �ATP − �ADP. This quantity is in the range−40–60 kJ mol−1, i.e. about−25kBT. In the case �w≪−kBT,
the later conditions leads to ��≪�w≪−kBT. This implies that ka

B→A
≫ k

p

A→B
. The A→ B reactions can be neglected. In our model,

this would then correspond to the region close to the EB→A enzyme, which could then be considered an active region.

The symmetrical case, �w≪ kBT leads to k
p

B→A
≪ k

p

A→B
. A reverse active reaction flux occurs for ��≪�w≪ kBT. This implies

that ka
A→B

≪ ka
B→A

. Under this scenario, EA→B would catalyse the active pathway and EB→A the passive one.

All in all, our model is consistent with the coexistence of active and passive regions around two kinds of Brownian enzymes

that drive the chemical composition of the system in opposite directions. The assumptions for the values of the chemical drive and

for the internal free energies of the reactants and products are compatible with most real biological systems.

A.3. Consistency of our model

A.3.1. Influence of the presence of reverse reactions

In the study described in the main text, we considered that each type of enzyme only allows a forward reaction in its vicinity

(A→ B in the vicinity of EA→B enzymes and B→A in the vicinity of EB→A enzymes). In order to test this assumption, we here con-

sider a series of simulations for which the reverse reaction B→A with a rate kr
A→B

occurs also in the vicinity of enzyme EA→B (and

respectively, the reverse reaction A→ B with a rate kr
B→A

in the vicinity of EB→A). Nevertheless, we keep considering systems in

which the B state is predominant close to EA→B enzymes and theA state is predominant close to EB→A enzymes. Therefore, the rates

for the reverse reactions are significantly smaller than the rates of forward reactions (kr
B→A

= kr
A→B

= 0.01, whereas kA→B = kB→A = 10).

As it is shown in figure 7, the time evolution of the droplet size, and the distribution of the droplet size at stationary state are

unaffected by the presence of slow reverse reactions. This justifies neglecting the reverse reactions.

A.3.2. Influence of the range of action of the enzymes

The range of action of the enzymes is controlled by the parameter rcut. Figure 8 presents the average size of droplets obtained

with two different values of rcut, all other parameters being unchanged, as a function of the concentration of EB→A enzymes. The
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Figure 7. Influence of weak reverse reactions in full BD. In red, kA→B = 10, k rA→B = 0.01 around enzyme EA→B , and kB→A = 10, k rB→A = 0.01 around enzyme EB→A. In
blue, kA→B = kB→A = 10, with the reverse reactions neglected, as in the main text. The concentrations are: �p = 0.1, �A→B = 1.6 × 10−3, �B→A = 3.3 × 10−3 and
�C = 5.3 × 10−3. Left: average number of B particles in a droplet as a function of time. Right: probability density of the number of particles in a droplet at stationary
state, computed here from time 5000 to time 10 000. An exponential fit of the probability, computed on the intervalNBD ∈ [0, 150], gives a characteristic size of 36.3
for direct reaction only and 35.9 for both direct and reverse reactions.

Figure 8. Influence of the range of action of enzymes in full BD. Average number of B particles in a droplet at stationary state as a function of the concentration of EB→A

enzymes, for two different values of the parameter rcut, that defines the distance from the centre of enzymes under which reactions can occur. Here,�A→B = 1.6 × 10−3.

results differ quantitatively, but they are qualitatively similar. The larger the value of rcut, the smaller the size of the droplets at the

stationary state, as their size is limited by the encounter with EB→A enzymes.

A.3.3. Influence of the size of the simulation box

As it is shown in figure 9, the time evolution of the droplet size, and the distribution of the droplet size at stationary state, are not

strongly affected by the size of the simulation box in full BD. In both cases, concentrations of particles are exactly the same, and

the results are averaged over the same number of independent realizations. The same trend is found for the time evolution of the

droplet size, and for the distribution of droplet size at stationary state, which shows that finite size effects in full-BD simulations

are negligible.

Appendix B. Hybrid dynamics approach (hybrid method, HM)
B.1. Model
We consider a binary mixture (BM) of two species A and B characterized by the order parameter  (r, t) = �A − �B, defined as the

difference of concentration of species A and B. It is mixed with a suspension of Ne enzymes, each capable of inducing either the

reaction A→ B (EA→B enzyme) or the reaction B→A (EB→A enzyme) in its vicinity. Each enzyme has a finite diameter � and its

position is given by ri for i= 1…Ne.
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Figure 9. Influence of the box size in full BD. In red, lbox = 99�p. In blue, lbox = 70�p, as in the main text. The concentrations are: �p = 0.1, �A→B = 1.6 × 10−3,
�B→A = 3.3 × 10−3 and�C = 5.3 × 10−3. Left: average number of B particles in a droplet as a function of time. right: probability density of the number of particles in
a droplet at stationary state, computed here from time 5000 to time 10 000. An exponential fit computed on the intervalNBD ∈ [0, 150] gives a characteristic size of
36.1 and 35.8 forlbox = 70�p andlbox = 99�p, respectively.

In the absence of reactions, the total free energy of the system, called passive system, is the sum of several contributions,

F= FBM + Fee + Fcpl (B 1)

with FBM related to the A∕B binary mixture, Fee to the enzyme–enzyme interaction and Fcpl to the coupling between the field  and

the enzyme. The free energy of the BM is given by a standard Ginzburg–Landau functional of  as

FBM = ∫ dr [−1

2
� 2 + 1

4
u 4 + 1

2
D(∇ )2] (B 2)

where � and u specify the local free-energy density, while D controls the energetic penalty associated to gradients in the order

parameter [31].

The minimization of the local expression of the free energy leads to the equilibrium amplitude  eq of the order parameter  .
In bulk regions far from the interfaces, where the gradients of  can be neglected, we simply get  eq =

√
�∕u. Furthermore, both

linear stability analysis andminimization of the free energy can be shown to lead to an equilibrium interface thickness lBM =
√
D∕�

(related to the largest unstable wavelength).

The enzyme–enzyme free-energy contribution is a pairwise additive interaction of a completely repulsive potential that

prevents overlapping

Fee =
∑

ij

V(rij∕�) (B 3)

where rij is the distance between particles i and j. A soft repulsive Yukawa-like potential is chosen:

V(r) =V0

exp(1 − r∕�)
r∕�

, (B 4)

with a cutoff for distances larger than �.
The particle-field interaction writes

Fcpl =
∑

i

c ∫ dr c(|r − ri|) [ (r) −  0]
2

(B 5)

where c controls the strength of the particle-field interaction and  0 controls the selectivity of the particle. The tagged function [44]

 c(r) = exp
[
1 − 1∕(1 − (r∕R)2)

]
(B 6)

decays smoothly to zero at the corona of the enzyme for r=R= �∕2. The position ri of the particle will minimize the coupling free

energy by segregating to regions of space where  (r) ≈  0. The strength of the interaction can be quantified by the parameter with

energy units "cpl = c 2
eqR

2.

The dynamics of the binary mixture is controlled by the Cahn–Hilliard–Cook [31,45,46] diffusive equation for the order param-

eter  with the addition of a reactive flux arising from the presence of enzymes. The two coupled dynamic equations for both the

field  and enzyme position ri are

) 
)t =M∇2 ( �F� ) +

√
2kBT M� + ∇ ⋅ j

a
(B 7a)

dri
dt

= 
−1t f
i
+
√
2Dt�t(t) (B 7b)
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whereM is a mobility constant for the BM [47], which allows to define a diffusive time scale tBM = l2
BM
∕(�M). A random noise � is

added to the Cahn–Hilliard equation, satisfying fluctuation-dissipation theorem [48]. A diffusion coefficient Dt is related to the

friction 
t = kBT∕Dt and with a noise �t satisfying fluctuation-dissipation theorem. Two forces act on the enzyme f
i
= f

cpl

i
+ f

ee

i
=

−)∕)ri(Fcpl + Fee), respectively, due to the coupling with the field and the repulsive enzyme–enzyme interaction.

The flux j
a
is due to the reactions in the vicinity of enzymes. Each enzyme induces a steady conversion rate K in a region of

radius Ra centred around ri for enzyme i:

∇ ⋅ j
a
=
∑

i

K�(Ra − r) (B 8)

where r is the distance between the point in space r and the position of the ith enzyme ri. The sign of K depends on the type of

reaction that takes place within the r<Ra region: if K > 0, a EB→A enzyme transforms B ( < 0) intoA ( > 0); if K < 0, a EA→B enzyme

transforms A ( > 0) into B ( < 0). The sign of the reaction rate K depends on the local average value of  in the vicinity of the

enzyme, such that,

K( a) =
1

2
K0

[
1 − sign(K0) a

]
(B 9)

where  a = ⟨ ⟩r<Ra is the average value of  within the r<Ra region for a given enzyme. This means that, for an EB→A enzyme

producing the A protein, the reaction rate is K ∼K0 in regions where  < 0 ( a ∼−1), while K ∼ 0 in regions where  > 0 ( a ∼+1),
where no reactant is present.

B.2. Dimensionless form of the equations and parameter values
Due to the large number of parameters in equation (B 7a), it is useful to express the two coupled dynamic equations in

dimensionless form, as

) 
)t =∇2

[
− +  3 − ∇2 + 2c̃ c(r∕R̃)

(
 −  ̃0

)]
+
√
2"� + t̃−1

K
�(R̃a − r) (B 10a)

)ri
)t = D̃t

(
"̃cplf

cpl

i
+ "̃eef

ee

i
+
)
+
√
2D̃t�t(t) (B 10b)

where length are in units of lBM, time in units of tBM and the order parameter amplitude is scaled with  eq. The dimensionless

parameters verify:

c̃= c∕�, "̃cpl = "cpl∕kBT, R̃=R∕lBM, (B 11)

 ̃0 = 0∕ eq, t̃K =
tK
tBM

, R̃a =Ra∕lBM (B 12)

D̃t =Dt∕M, "̃ = kBT∕(� 2
eql

2
BM
) (B 13)

The simulation box is a squared grid of 256 × 256 points (except for figure 6 with a grid of 128 × 128 points). The length scale is

set such that lBM = 0.85. Then, we take for the enzyme radius R̃= 1.47, so that the size of the enzyme is comparable to the interface

width between B-rich droplets. The strength of the coupling with respect to enzyme thermal energy, "cpl = 240, and with respect

to the BM local energy, c̃= 2.8, are chosen to be large enough to ensure that the respective forces and chemical potential are dom-

inant. The selectivity of both types of enzyme is  ̃0 =+1, to mimic the fact that, in equilibrium (K = 0) all enzymes are dispersed

outside of the droplets (B species), i.e. in contact with the A phase. The diffusivity of the enzyme compared with that of the BM is

D̃t = 0.2, to have both components diffusing in a similar time scale. The rate of reaction is t̃K = 0.1 and the radius of the reaction area
is R̃a = 9.4. The scale of the thermal fluctuations "̃ = 0.05 is chosen so that they are subdominant with respect to the characteristic

local energy of the BM.

All simulations are initialized from a random distribution of  values centred around ⟨ ⟩ = 0.3 to ensure the formation of

B ( < 0) droplets in a matrix of A ( > 0). A droplet is defined as the system region (x, y)where  (x, y) < 0. Standard cluster anal-

ysis are used to determine the individual droplets, to then characterize the number of droplets and the mean droplet size, defined

as the average number of grid points in droplets, rescaled by the unit area l2
BM
. A droplet is defined as a cluster of at least five grid

points.

Appendix C. Analytic model for droplet growth
We propose a simple model to describe the evolution with time of the mean droplet size, which largely differs from the prediction

of the Oswald ripening mechanism. We consider n independent droplets, each made ofN proteins, and connected to a reservoir

of B proteins.

The reservoir yields a constant and equal influx c of proteins towards each droplet. The droplets are assumed to be totally emp-

tied when they encounter an EB→A enzyme, and restart growing just after the encounter. Consequently, the evolution equation for

each droplet, between t and t + dt is:

N(t + dt) =
⎧

⎨
⎩

c dt if encounter in [t, t + dt]

N(t) + c dt otherwise.
(C 1)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

07
 M

ay
 2

02
5 



13

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

22:
20240803

..................................................................................................................

We assume now that the encounters between EB→A enzymes and droplets are memoryless, so that encounter times follow an expo-

nential probability distribution. We call � the expectation value of this distribution, corresponding to the average encounter time

between a droplet and an EB→A enzyme. Therefore, the probability that the encounter takes place between t and t + dt is dt∕�.
By averaging equation (A 1) , we get:

⟨N(t + dt)⟩ = (⟨N(t)⟩ + c dt) (1 − dt

� ) + c dt
dt

� (C 2)

= ⟨N(t)⟩ (1 − dt

� ) + c dt (C 3)

Thus,

)⟨N⟩
)t =−⟨N⟩

� + c (C 4)

Before solving this equation, we express � in terms of the parameters of the model. If we neglect correlations between EB→A en-

zymes (low-concentration regime), this characteristic encounter time can be approximated by the characteristic encounter time te
between a droplet and a single EB→A enzyme, divided by the number of EB→A enzymes S�B→A, i.e. � = te∕S�B→A (with S being the

area of the simulation box and �B→A being the concentration of EB→A enzymes). Also, te depends on the diffusion coefficients of

both particles, and thus verifies:

te ∝
1

Ddp +DEB→A

, (C 5)

with DEB→A
the diffusion coefficient of the EB→A enzyme, and Ddp the diffusion coefficient of the droplet.

Solving this differential equation with initial conditions ⟨N⟩ = 0, and using the previous expression of �, yields:

⟨N⟩ = c
te

S�B→A

(1 − exp (
−tS�B→A

te
)) (C 6)

This corresponds to equation (5.1) in the main text.
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