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Biomolecular condensates play a central role in the spatial organization of living matter. Their formation
is now well understood as a form of liquid-liquid phase separation that occurs very far from equilibrium. For
instance, they can be modeled as active droplets, where the combination of molecular interactions and chemical
reactions result in microphase separation. However, so far, models of chemically active droplets are spatially
continuous and deterministic. Therefore, the relationship between the microscopic parameters of the models
and some crucial properties of active droplets (such as their polydispersity, their shape anisotropy, or their
typical lifetime) is yet to be established. In this work, we address this question computationally, using Brownian
dynamics simulations of chemically active droplets: the building blocks are represented explicitly as particles
that interact with attractive or repulsive interactions, depending on whether they are in a droplet-forming state
or not. Thanks to this microscopic and stochastic view of the problem, we reveal how driving the system away
from equilibrium in a controlled way determines the fluctuations and dynamics of active emulsions.
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Introduction. The formation of biomolecular condensates
is a central feature of the spatial organization of living matter
at the subcellular and subnuclear levels, and plays a key role
in the regulation of multiple metabolic processes [1,2]. During
recent years, a significant research effort has been devoted
to understanding the physical and chemical mechanisms that
govern the formation and the dynamics of these membraneless
organelles, both from experimental and theoretical points of
view. The now widely spread picture is that of a form of
liquid-liquid phase separation that takes place very far from
thermodynamic equilibrium, and that typically results in the
selection of a well-defined size for the condensates [3–6].

From a thermodynamical point of view, the stability of
finite-size condensates indicates that Oswald ripening is ar-
rested: it was suggested that this could originate from the
interplay between phase separation and nonequilibrium chem-
ical reactions [7]. More precisely, in models for active
droplets, biomolecular condensates are typically made of pro-
teins that coexist under two states: one in which they tend
to form droplets, and one in which they do not. The conver-
sions between these two states are assumed to break detailed
balance. This idea, which dates back to the studies of nonequi-
librium dissipative structures [8,9], has become prominent in
recent theoretical studies and in the context of biomolecu-
lar condensates: Flory-Huggins-like continuous descriptions
have been designed to account for the formation of active
emulsions and chemically active droplets [10–14], and can be
engineered experimentally with coarcevates [15,16].

However, so far, models of chemically active droplets are
spatially continuous and deterministic, in such a way that they
cannot account for the polydispersity in size and shape of the
droplets. Moreover, these models cannot resolve the dynamics
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of the system in the stationary state, where fluctuations are
responsible for the continuous nucleation of new droplets,
and their coalescence. Both these aspects are crucial at the
mesoscale, i.e., when condensates are very small and where
thermal fluctuations play a prominent role. Recently, in ex-
periments, this appeared to be a particularly relevant level
of description [17]. Additionally, such models rely on the
numerical resolution of partial differential equations which
are very costly and which then have been limited to 2D sys-
tems [10,11,13,14]. In this context, it is mandatory to design
particle-based simulations of chemically active droplets. This
represents a challenge, both in the understanding of the rel-
evant timescales and microscopic details of the model, and
in the interpretation of the data, which requires advanced
computational tools.

In this Letter, we propose a microscopic and stochastic
model for chemically active droplets. Using Brownian dy-
namics simulations of model proteins that switch between
two states [Fig. 1(a)] and that transiently attract each other
[Fig. 1(b)], we identify the conditions under which stable,
finite-size droplets may form. The nonequilibrium ingredient
of the model is a chemical drive, which breaks detailed bal-
ance, and whose amplitude controls the size of the droplets,
their polydispersity, and their shape anisotropy [Fig. 1(c)].
In addition, we fully characterize the nonequilibrium steady
state, by monitoring the coalescence and shrinkage processes
at the level of individual droplets—an aspect out of reach from
previous deterministic, coarse-grained descriptions. In this
context, the present work reports particle-based simulations of
active droplets that form through the interplay between phase
separation and chemical reactions which are driven away from
equilibrium in a controlled way.

Model. We consider a three-dimensional suspension of
Brownian particles made of three species, denoted by A, B,
and C. A particles may convert into B, and vice versa—
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FIG. 1. (a) Two chemical pathways for the interconversions
A�B: a passive pathway, which fulfils detailed balance, and an
active pathway, which violates it, because of a constant chemical
drive �μ. (b) System under study: chemically active species (A and
B) and inert particles (C, represented as gray dots for readability).
See text for details on the interaction potentials. (c) Typical snap-
shots: starting from the same initial configuration, an equilibrium
simulation, where species interconversions only follow the passive
pathway (�μ = 0), leads to macroscopic phase separation, whereas
a nonequilibrium simulation (�μ > 0) leads to interrupted phase
separation and selection of a finite droplet size.

the dynamics of these interconversions will be specified
later on. To account for the high density of the intracellular
medium [18,19], C particles are crowders that do not undergo
any reaction. Their density is chosen in such a way that the
total volume fraction is 0.1.

We denote by Sn(t ) ∈ {A, B,C} the species of particle n at
time t . We assume that the positions of particles r1, . . . , rN

obey overdamped Langevin equations (see the Supplemental
Material [20] for details on the numerical methods [21,22]).
The pair interaction between two particles m and n, denoted
by USnSm (rmn), depends on their species and on their relative
distance rmn = |rm − rn|. The evolution equations of the par-
ticles positions read,

drn

dt
=

√
2Dηn(t ) − D

kBT

∑

m �=n

∇USn,Sm (rmn), (1)

where we assume that all the particles have the same bare
diffusion coefficient D, and where ηn(t ) is a Gaussian white
noise of zero average and unit variance 〈ηn,i(t )ηm, j (t ′)〉 =
δi jδnmδ(t − t ′). Since the dynamics is overdamped, the veloc-
ities of the particles at a given time are irrelevant, and the
state of the system is completely described by the config-
uration vector C = (r1, . . . , rN ; S1, . . . , SN ). The B particles
interact with each other through a Lennard-Jones (LJ) poten-
tial, which is truncated at a distance rc = 2.5σ (σ being the
diameter of the particles), and shifted in order to ensure con-
tinuity of the potential at r = rc. It reads UB,B(r) = [Uε(r) −
Uε(rc)]θ (rc − r), where Uε(r) = 4ε[( σ

r )12 − ( σ
r )6] is the stan-

dard LJ potential and θ (r) denotes the Heaviside function.
All the other pair interactions are purely repulsive and are
modeled by the Weeks-Chandler-Andersen (WCA) poten-
tial [23], which is simply a Lennard-Jones potential truncated

and shifted at r = 21/6σ : UA,{A,B,C} = UC,{A,B,C} = [Uε′ (r) +
ε′]θ (21/6σ − r). The energy parameters of the interaction po-
tentials are ε′ = kBT and ε = 2kBT : the latter ensures that, in
the absence of species interconversion, the B particles phase
separate at the considered density. Throughout the paper, the
distances will be measured in units of σ , the energies in units
of kBT , and times in units of σ 2/D.

In order to specify the rules of species interconversions, let
us consider two configurations C and C ′, which only differ by
the species of one particle. We assume that the species of each
particle obey a random telegraph process [24], in such a way
that the probability for the system to be in configuration C ′ at
time t + δt knowing that it was in configuration C at time t
reads, for a sufficiently small δt , P(C ′, t + δt |C, t ) 	 kC,C′δt ,
where kC,C′ is the rate at which the transition takes place. A
crucial feature of our model is that the transition rates have
two contributions: a passive one kp

C,C′ , and an active one ka
C,C′ ,

in such a way that kC,C′ = kp
C,C′ + ka

C,C′ .
First, when the system is at equilibrium, interconver-

sions take place through a "passive" pathway. The conversion
rates must obey the detailed balance condition: kp

C′,C/kp
C,C′ =

exp{−β[E (C) − E (C ′)]}, where β = (kBT )−1, and where
E (C) = 1

2

∑
m �=n USnSm (rmn) + ∑

n wSn , with wSn being the in-
ternal energy of a particle of species Sn. Second, we consider
the situation where detailed balance is broken, and where in-
terconversions take place through an "active" pathway. In this
situation, we write the ratio between the rates as ka

C′,C/ka
C,C′ =

exp{−β[E (C) − E (C ′) + κC′,C�μ]}, where �μ is a chemical
drive, and κC′,C = 1 if the transition from C ′ to C implied the
formation of a B particle and −1 otherwise (the reason for
this choice will be made clear in the next paragraph). The
active pathway can be interpreted as follows, if we consider
for example the common involvement of ATP in biochemical
reaction: if the formation of an A particle is only possible by
ATP consumption (B + ATP � A + ADP) and assuming that
the chemical potentials of ATP and ADP are almost constant
(i.e., they are chemostatted), the chemical drive is actually
given by the difference between the chemical potentials of the
chemostatted species: �μ = μATP − μADP [25].

To form stable droplets, and to avoid the formation of a
single one, the formation of A particles must be favored in
dense regions (i.e., where droplets tend to form), and, on
the contrary, the formation of B particles must be favored
in dilute regions. Following the idea from Refs. [7,11,12],
we assume that kp

C′,C = k0(1 − φloc/φmax)e− β

2 [E (C)−E (C′ )] and

ka
C′,C = k0(φloc/φmax)e− β

2 [E (C)−E (C′ )+κC′ ,C�μ], where φloc is the
local density of A and B particles around the particle whose
species change between configuration C and C ′, and where
φmax is the maximum volume fraction of the mixture and
is approximated to the maximum packing fraction in three
dimension: φmax 	 0.74. We fix k0 = 10−2 in all the simu-
lations. With this choice of the reaction rates ka,p

C′,C , and at
equilibrium (�μ = 0), global detailed balance is fulfilled:
kC′,C/kC,C′ = exp{−β[E (C) − E (C ′)]}. Therefore, the param-
eter �μ controls finely the deviation from equilibrium, as
opposed to previous models of mixtures of particles with
“active switching”, which have been studied in other con-
texts [26–35]. In those descriptions, the rates of conversion
of the particles are independent of their local environment, in
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FIG. 2. Left: Radial distribution function (RDF) between {A, B}
particles in the stationary state (for t between 104 and 6 × 104). The
RDF for particles in a system at the same density and interacting
via a WCA potential is shown in gray for reference. Right: Average
volume of the droplets 〈v〉 as a function of time for various values
of the chemical drive �μ. Solid lines are running averages (over 50
points) of the raw data, shown in lighter color.

such a way that the distance of the system to equilibrium is
difficult to evaluate.

Another key parameter of our model is the difference be-
tween the internal energies �w = wB − wA. Here, we take
wA = wC = 0 and wB = 0.5, meaning that �w > 0, and that
A is more stable than B in the absence of interactions. How-
ever, stable droplets can also be formed for other choices
of �w (including �w < 0). This simply requires to explore
other values of the chemical drive �μ. The choice of param-
eters is discussed in details in the SM, and we show that the
formation of stable droplets is not restricted to the parameters
shown in the main text [20].

Formation of active droplets. We perform numerical sim-
ulations and tune the parameter �μ, which quantifies the
deviation from thermal equilibrium, and which will be varied
from zero to ten. In the range of parameters we consider, we
observe that the B particles tend to form droplets [Figs. 1(b)
and 1(c) and movies in the Supplemental Material]. We com-
pute the radial distribution functions of A and B particles, in
the stationary state and for �μ > 0 (Fig. 2). These functions
bear the signature of the formation of dense clusters that be-
come less structured as �μ increases. In order to characterize
quantitatively the spatial structure, we perform a cluster anal-
ysis on each trajectory [20], and compute the average volume
of the droplets at time t , denoted by 〈v〉.

At equilibrium, i.e., when �μ = 0, we observe that 〈v〉
increases as a power law (〈v〉 ∼ tα , with α 	 0.48, see Fig. 2).
This slow increase is characteristic of the progressive coarsen-
ing of a single droplet, as expected for purely passive systems,
through Ostwald ripening. On the contrary, when �μ > 0,
one observes that 〈v〉 quickly saturates at a finite value, that
depends on �μ, and that is much smaller than the typical
volumes reached at equilibrium (see movies in the Supple-
mental Material for examples of simulation trajectories). This
defines a stationary state in which, although 〈v〉 does not vary
anymore, droplets coalesce and are continuously nucleated
in the dilute phase. We then conclude that the active reac-
tion pathway results in droplet size selection, as predicted by
continuous-space reaction-diffusion theories [7,10,11]. Note
that for values of �μ smaller than eight, the typical droplet
volume that is selected by the active reaction pathway is

FIG. 3. Left: Probability distribution of the droplet volume v, for
various values of the chemical drive �μ, in the stationary state. The
two stars represent, for �μ = 8 and 9, the stable fixed points in
the phase portrait shown in Fig. 4. Right: Shape anisotropy of the
droplets as a function of their volume v. Solid lines are running
averages (over ten points), and the widths of the colored areas are
the standard deviations (insets: schematics of the spherical and non-
spherical droplets, which correspond, respectively, to low and high
values of κ2).

large, and is likely to be comparable to system size, in such
a way that strong finite size effects prevent us from reaching
stationary state in a reasonable computational time.

Polydispersity and shape anisotropy of the active droplets.
As seen in Fig. 2, the volume of the droplets strongly fluctu-
ates around its average value. To quantify the polydispersity
of the droplets, we measure the volume of each droplet at
each time step and in the stationary state, and we plot the
resulting histograms in Fig. 3. For small enough values of �μ,
the distributions typically show a wide peak at a large value
of v, which represents the volume of the droplet selected by
the active pathway. Furthermore, the distribution of v is large,
which shows that the droplets are very polydisperse. This
is in contrast with purely deterministic approaches, which
result in the selection of a single droplet size, with vanishing
fluctuations. Finally, we observe that the variances of these
distributions decrease as the chemical drive increases.

The probability distribution P (v) does not contain infor-
mation about the shapes of the droplets. We characterize them
through the computation of the gyration tensors of the droplets
and their eigenvalues [20]. We introduce a coefficient κ2,
called shape anisotropy, and that varies between zero and
one, which correspond, respectively, to a perfectly spherical
droplet and a perfectly elongated one. As seen in Fig. 3, for
small enough values of v, the shape anisotropy κ2 decreases
with v: this is expected, as the B particles constituting the
droplets arrange in such a way to minimize surface tension.
However, for larger values of v, we observe that the shape
anisotropy may become an increasing function of the droplets
volume. This means that, in this range of parameters, droplets
tend to have a more elongated shape than the one that mini-
mizes their surface tension. We interpret this as follows: under
the effect of thermal fluctuations, droplets diffuse in the simu-
lation box and coalesce, thus forming large droplets whose
shape is elongated (see the inset of Fig. 3 and the movies
in the Supplemental Material). Under the combined effect of
surface tension and active chemical reactions, droplets that are
formed by coalescence events relax to smaller and more spher-
ical droplets. Note that large, aspherical droplets, that result
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time

FIG. 4. Left: Schematic representation of v̇. Right: Phase portrait
of the volume of droplets (derivative of the volume with respect
to time as a function of the volume) for different values of the
chemical drive �μ. For �μ = 8 and 9, the two stars correspond to
the typical volume reached by a droplet (shown on Fig. 3). Open
symbol: unstable fixed point. Stars: stable fixed points.

from coalescence events, are quite rare in our simulations and
correspond to the tails of the distributions shown on the left of
Fig. 3.

Size selection mechanism and lifetime of the active droplets.
In order to support this claim, we now study the time evo-
lution of the droplets in the stationary state. Indeed, so far,
we have only identified droplets at each timestep without
linking them from one step to another. To go further, we
design an algorithm to track droplets in time [20]. The volume
of each droplet is monitored from its birth (that may occur
from spontaneous nucleation) to its death (that may occur
through shrinking below a threshold value, or coalescence
with another droplet). For each droplet that is then identified
and tracked, we compute the derivative of v with respect to
time and plot the resulting phase portrait (the average 〈v̇〉 as a
function of v) in Fig. 4.

This plot shows that, for values of the chemical drive that
lead to the selection of large droplets (�μ = 8 or 9), the
curves cross the horizontal axis twice: there are then two
fixed points. First, at small volumes, the unstable fixed point
represented by the empty circle in Fig. 4, corresponds to the
critical nucleation volume vcrit: below this volume, droplets
are unstable and dissolve spontaneously. Second, there is a
stable fixed point at a volume that we will call v∗ and that is
represented by the two stars in Fig. 4. We report the values of
v∗ on the probability distribution shown in Fig. 3 and observe
that they correspond to the maxima of P (v). More precisely,
when the droplets have initially a volume between vcrit and v∗,
the derivative of their volume with respect to time is positive,
meaning that they tend to grow by aggregation of B particles
from the dilute phase, or coalescence with other droplets. On
the contrary, when their initial volume is greater than v∗, 〈v̇〉 is
negative, meaning that they shrink until they reach the stable
value v∗.

This mechanism for droplet size selection is therefore a
microscopic and stochastic counterpart to the predictions from
continuous and deterministic models [10]. In such theories,
the typical volume reached by the droplets at equilibrium is
understood as a compromise between a growth (resp. loss)
term, which dominates at small (resp. large) volumes. How-
ever, as opposed to the ideal case considered in those theories
(droplets in infinite volume without fluctuations), we cannot

(a) (b)

(c) (d)

FIG. 5. Average volume of the droplet during its life as a function
of the lifetime τ for different death events and for �μ = 8 (a) and
�μ = 9 (b). Probability distribution of droplet lifetime τ for differ-
ent death events and for �μ = 8 (c) and �μ = 9 (d).

identify these terms unambiguously given the limited statistics
at small volumes.

Finally, we show that our stochastic simulations capture
the broad range of behaviors that emerge in the nonequilib-
rium steady state. To this end, for each droplet identified and
tracked in the trajectories, we compute the number of steps
elapsed between its birth and its death [20]—this "lifetime"
will be denoted by τ . We observe that there are two reasons
for droplets to disappear: they either coalesce with another
one or shrink below the critical volume vcrit. We show in
Figs. 5(a) and 5(b) the average volume of the droplet during
their life as functions of their lifetime: the data is split depend-
ing on the type of death event. For �μ = 8, large droplets
(of volume close to v∗) are very unlikely to shrink below the
critical volume vcrit: this is consistent with the phase portrait
where v∗ � vcrit. As a consequence, they mostly experience
coalescence events and their lifetime is much larger then the
one of smaller droplets as can be seen on the probability
distribution of τ , shown in Fig. 5(c). On the contrary, for
�μ = 9, large droplets can either coalesce or shrink: since
v∗ is closer to vcrit, fluctuations can easily bring any droplet
below the critical nucleation volume. In this case, the lifetime
depends much less on the size of the droplet [Figs. 5(b)
and 5(d)]. Interestingly, this shows that the active pathway
controls not only the size and shape of the droplets, but also
the time during which they persist and keep B particles in
close vicinity. This property may play a key role in some
biological processes, where condensates are known to act as
microscopic "reactors," that bypass the diffusion-limited step
of chemical reactions [36,37].

Conclusion. In this Letter, we introduced a particle-based
computational framework designed to study active droplets.
Our microscopic and stochastic approach enabled us to
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simulate Brownian suspensions where Ostwald ripening is
interrupted in a controlled way, allowing for a detailed
characterization of the polydispersity, shape anisotropy, and
fluctuations of active droplets in the nonequilibrium steady
state of the system. Our work not only advances the under-
standing of active emulsions but also provides a versatile
methodology applicable to a wide range of systems. As a

perspective, the present work opens the way to the understand-
ing of the effect of macromolecular crowding on the formation
of biomolecular condensate [38,39].
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