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In recent years, the theoretical description of electrical noise and fluctuation-induced effects in
electrolytes has gained renewed interest, enabled by stochastic field theories like stochastic density
functional theory (SDFT). Such models, however, treat solvents implicitly, ignoring their generally polar
nature. In the present study, starting from microscopic principles, we derive a fully explicit SDFT theory
that applies to ions in a polar solvent. These equations are solved to compute observables like dynamic
charge structure factors and dielectric susceptibilities. We unveil the relative importance of the different
contributions (solvent, ions, cross terms) to the dynamics of electrolytes, which are key to understand the
couplings between ions and the fluctuations of their microscopic environment.

DOI: 10.1103/PhysRevLett.133.268002

Introduction—Predicting analytically the structure and
dynamics of electrolytes from microscopic considerations
is a crucial challenge in chemical physics, with significant
applications across various fields, from electrochemistry to
soft matter physics. Going beyond their well-established
average properties, such as their activity coefficient or their
conductivity [1,2], recent experimental research has
unveiled the prominent role played by fluctuations on their
dynamics [3–6]. From the theoretical point of view,
particle-based simulations (molecular or Langevin dynam-
ics) as well as analytical descriptions of the underlying
stochastic dynamics have enabled the study of the dynami-
cal response properties of electrolytes, for instance, through
frequency-dependent conductivity [7,8] or fluctuation-
induced effects [9–15]. In particular, stochastic density
functional theory (SDFT) that stems from the works of
Kawasaki [16] and Dean [17] on the coarse-graining of
interacting Langevin processes has become a key tool to
study the properties of electrolytes (such as their conduc-
tivity [18–25], ionic correlations [26,27], or viscosity
[28–30]) as well as the static structure of polar liquids [31].
However, so far, SDFT has been limited to situations

where the solvent in which the ions are embedded is
described in an implicit way: This approach could therefore
be seen as a stochastic extension of the classical Poisson-
Nernst-Planck framework. Although it is able to capture
some essential properties of electrolytes, it ignores the fact
the solvent molecules also bear charge distribution, which
can, to leading order, be represented by a polarization field,
whose dynamics is coupled to the ionic charge density.
Such couplings are key to understand the relation-
ship between ions and their microscopic environment,
which control numerous key processes, such as water

autodissociation [32], dielectric solvation [33], or NMR
relaxation of quadrupolar nuclei [34,35]. The effect of the
solvent on the ion dynamics has been studied from the
numerical and theoretical points of view [36–39], and it can
be introduced in implicit solvent theories of the conduc-
tivity [7]. However, the mutual coupling of ion and solvent
dynamics has received less attention. This aspect can be
investigated using molecular simulations with an explicit
solvent [40–42], but is much more challenging in analytical
approaches.
The goal of this Letter is twofold. First, we fill the

theoretical gap that is set out in this introduction and derive
SDFT equations for ions in a polar solvent: Starting from
microscopic principles, our approach results in coupled
stochastic equations obeyed by the ionic charge density and
by the solvent polarization field. Second, these equations
are solved to compute the correlation and response func-
tions of the electrolytes, unveiling the relative importance
of the different contributions (solvent, ions, cross terms) to
the dynamics. As a perspective, given the strong interest
raised by the use of SDFT to study charged systems at the
level of fluctuations, we expect that the present work will
bring insight into the fluctuation-induced effects that have
been recently evidenced in electrolytes [9–15].
Model—We consider a binary electrolyte made of NI

cations and NI anions of respective charge �ze. We denote
by r�i ðtÞ their positions. The electrolyte is embedded in a
solvent represented by NS point charge dipoles of dipolar
moment p. We denote by rSj ðtÞ their position and ûjðtÞ their
unit orientation vector (see Fig. 1). Even though some of
the previous SDFT approaches accounted for hydrody-
namic couplings [11,19,21,22], the goal of the present
study is to highlight the interplay between ionic current and
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solvent polarization dynamics. To this end, we will adopt a
simple description, where both ions and solvent molecules
obey overdamped Langevin dynamics. We denote by μI
(resp., μS) the bare mobility of the ions (resp., solvent
molecules), and by DI ¼ kBTμI (resp., DS ¼ kBTμS) the
associated bare diffusion coefficients. We also denote by
Dr

S is the rotational diffusion coefficient of the solvent
molecules, and μrS the associated orientational mobility
(Dr

S ¼ kBTμrS). We introduce the stochastic density of
cations and anions as n�ðr; tÞ ¼

PNI
i¼1 δðr − r�i ðtÞÞ, and

that of solvent molecules, which has both translational
and orientational degrees of freedom: nSðr; û; tÞ ¼PNS

j¼1 δðr − rSj ðtÞÞδðû − ûjðtÞÞ.
The electrostatic potential at a given point of the solution

r denoted by φðrÞ is obtained by solving Poisson’s
equation: −∇2φðrÞ ¼ ½ρIðrÞ þ ρSðrÞ�=ε0 [47], where ρI ¼
zeðnþ − n−Þ is the charge density of the ions, and ρS is the
charge density associated with the solvent. Within the
dipolar approximation (i.e., at distances much larger than
the typical size of a solvent molecule), ρSðrÞ ≃ −∇ · PðrÞ,
where we define the polarization field of the solvent as
Pðr;tÞ¼R

dûpûnSðr;û;tÞ. The solution to Poisson’s equa-
tion is then φðr; tÞ ¼ R

dr0Gðr − r0Þ½ρIðr0; tÞ −∇ · Pðr0; tÞ�,
with the Green’s function GðrÞ ¼ 1=ð4πε0jrjÞ.
Stochastic density functional theory—In the overdamped

limit, the state of the system is fully characterized by the
positions of the ions r�i and the position and orientations of
the solvent molecules rSj and ûj. The evolution equations
read

dr�i
dt

¼∓ μIze∇φðr�i Þ þ
ffiffiffiffiffiffiffiffiffi
2D�

p
ξ�i ðtÞ; ð1Þ

drSj
dt

¼ −μSðpûj · ∇Þ∇φðrSj Þ þ
ffiffiffiffiffiffiffiffiffi
2DS

p
ξSj ðtÞ; ð2Þ

dûj
dt

¼
n
−½μrSpûj ×∇φðrSj Þ� þ

ffiffiffiffiffiffiffiffiffi
2Dr

S

p
ξS;rj ðtÞ

o
× ûj; ð3Þ

where the noises ξαaðtÞ are uncorrelated Gaussian white
noises of zero average and unit variance, i.e.,
hξαi;nðtÞξβj;mðt0Þi ¼ δαβδmnδijδðt − t0Þ, where n or m are
components of the vectors. Note that we assumed here
that the ions only interact through electrostatic interactions,
and that short-range repulsive interactions are neglected.
Starting from Eqs. (1)–(3), the derivations of the

equations satisfied by the ionic charge density ρI ¼
zeðnþ − n−Þ and the total number density C ¼ nþ þ n−
of ions are standard and rely on Itô’s lemma [17,18]. One
gets

∂tρI ¼ DI∇2ρI þ μIðzeÞ2∇ · ðC∇φÞ
þ∇ · ðze

ffiffiffiffiffiffiffiffiffiffiffi
2DIC

p
ζρIÞ; ð4Þ

∂tC ¼ DI∇2C þ μI∇ · ðρI∇φÞ þ∇ · ð
ffiffiffiffiffiffiffiffiffiffiffi
2DIC

p
ζCÞ; ð5Þ

where ζαðr; tÞ are uncorrelated Gaussian white noises of
zero average and unit variance (and similarly in the next
equation). In contrast, the derivation of the equation
satisfied by nS is more subtle as it involves two variables,
one of them being an orientational degree of freedom; see
Supplemental Material [48]. It reads

∂tnSðr; û; tÞ ¼ DS∇2
rnS þDr

SR
2
ûnS

þ∇r · ½nSμSpðû ·∇Þ∇φðrÞ�
þRû · ½nSμrSpû ×∇φðrÞ�
þ∇r · ½

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2DSnS

p
ζSðr; û; tÞ�

þRû · ½
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dr

SnS
p

ζS;rðr; û; tÞ�; ð6Þ

where Rû ¼ û ×∇û is the rotational gradient operator
[68]. Finally, note that, within the dipolar approximation,
Eqs. (4)–(6) form a closed set of equations for ρI, C, and nS,
since the electrostatic potential φ is related to ρI and ρS
through φðr; tÞ ¼ R

dr0 Gðr − r0Þ½ρIðr0; tÞ þ ρSðr0; tÞ�.
Although Eqs. (4)–(6) are exact reformulations of the

microscopic overdamped Langevin dynamics, they are
rather unpractical since they are nonlinear. To make
analytical progress, we linearize them around a uniform,
time-independent state [10,69]. More precisely, denoting
by CI the concentration of the electrolyte, we write
n� ¼ CI þ δn�, which implies ρI ¼ zeðδnþ − δn−Þ. At
linear order in the perturbation, the equation for ρI is
decoupled from that on c:

∂tρIðr; tÞ ¼ D∇2ρI þ 2μðzeÞ2CI∇2φþ ze
ffiffiffiffiffiffiffiffiffiffiffiffi
4DCI

p
ηρI ; ð7Þ

where hηρIðr; tÞηρI ðr0; t0Þi ¼ −δðt − t0Þ∇2
rδðr − r0Þ. Simi-

larly, the density of the solvent is expanded as
nS ¼ CS=4π þ cS, where CS is the concentration of solvent
molecules, and the 1=4π factor accounts for the uniform
density of orientations. The equation satisfied by the

FIG. 1. Left: system under study. NI anions and NI cations at
positions r�i are embedded in a solvent made of NS molecules
described by their positions rSj and their orientations ûj. Right:
imaginary part of the longitudinal permittivity of pure water
computed theoretically from our SDFT approach and compared
to the experimental data reproduced from Refs. [43–46].
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polarization is deduced using Pðr; tÞ ¼ R
dûpûcSðr; û; tÞ:

∂tPðr; tÞ ¼ DS∇2P − 2Dr
SP

þ 1

3
p2CS∇ðμS∇2φ − 2μrSφÞ þ Ξðr; tÞ; ð8Þ

with hΞkðr; tÞΞlðr0; t0Þi ¼ ð2p2CS=3Þδklδðt − t0Þð−DS∇2þ
2DR

S Þδðr − r0Þ. Note that for a system without ions, the
deterministic term on the rhs of Eq. (8) can be rewritten
under the form −ðδ=δPÞF ½P�, where the free energy
functional F ½P� is here derived from microscopic consid-
erations (see Supplemental Material [48]) and may be
compared to previously proposed expressions based on
symmetry considerations [49–54].
Evolution equations for the charge densities—Finally,

the evolution equation for ρS is deduced by taking the
divergence of Eq. (8). In Fourier space [70], we find the
following coupled stochastic equations for the ion and
solvent charge densities:

∂t

�
ρ̃Iðq; tÞ
ρ̃Sðq; tÞ

�
¼ −M

�
ρ̃Iðq; tÞ
ρ̃Sðq; tÞ

�
þ
� ΞIðq; tÞ
ΞSðq; tÞ

�
; ð9Þ

with

M ¼
�
DIðq2 þ κ2I Þ DIκ

2
I

DSκSðqÞ2 DS½q2 þ κSðqÞ2� þ 2Dr
S

�
; ð10Þ

where we introduced the Debye screening length of the
electrolyte κ−1I , which is such that κ2I ¼ ½2CIðzeÞ2=ε0kBT�,
and the wave-number-dependent screening length associ-
ated with the charge polarization of the solvent
κSðqÞ2 ¼ ð2p2CS=3ε0kBTa2Þ

�
1þ ðq2a2=2Þ�, where we

introduced a≡ ðDS=Dr
SÞ1=2, which is the typical

size of a solvent molecule. The noises ΞI and ΞS have
zero average and correlations hΞαðq; tÞΞβðq0; t0Þi ¼
2q2ε0kBTDακ

2
αð2πÞdδðqþ q0Þδðt − t0Þδαβ. Equation (9) is

formally solved as ρ̃αðq; tÞ ¼
R
t
−∞ dt0 Mαβðt − t0ÞΞβðq; t0Þ,

whereMðtÞ ¼ expð−tMÞ, and where repeated indices are
implicitly summed upon.
Equation (9) is the central result of this Letter, and

several comments are in order. (i) The coupled equations
for the fields ρ̃I and ρ̃S are fully explicit and actually
depend on a reduced set of parameters: the self-diffusion
coefficients of ions and solvent molecules DI and DS, as
well as their respective screening lengths κI and κSðqÞ,
which are themselves known in terms of the microscopic
parameters of the model. They do not rely on prior
knowledge of the static structure of the electrolyte, whereas
it is generally the case in dynamical DFT approaches and
are expected to be valid for dilute electrolytes. (ii) These
equations give access to the coupled statistics of the ionic
charge density ρI and to the charge polarization ρS, as well
as to many derived quantities of experimental interest that

will be described in what follows. (iii) It is straightforward
to show that the eigenvalues of M are always positive, in
such a way that the solutions to Eq. (9) never diverge
(which is a consequence of the mutual relaxation of ionic
currents and solvent polarization). (iv) As a consequence of
the linearization procedure, the stochastic fields ρ̃I and ρ̃S
have Gaussian statistics.
Static and dynamic charge structure factors—From the

solution to the matrix equation obeyed by the charge den-
sity fields ρ̃I and ρ̃S, we deduce the charge dynamic struc-
ture factors (or intermediate scattering functions), which
are defined as Fαβðq; tÞ ¼ ðN αN βÞ−1=2hρ̃αðq; tÞρ̃βð−q; 0Þi
[55], where we write N I ¼ 2NI and N S ¼ NS for sim-
plicity (we also write Ctot

I ¼ 2CI and Ctot
S ¼ CS). Note

that this definition actually holds for a finite system in a
volume V: Our results, which were implicitly derived in the
thermodynamic limit, can be mapped onto finite systems,
which are of interest in molecular dynamics simulations,
for instance, by making the change ð2πÞdδðqþ q0Þ →
Vδq;−q0 . We find

Fαβðq; tÞ ¼
2q2ε0kBT

ðCtot
α Ctot

β Þ1=2
X

γ ∈ fS;Ig
ν¼�1

Dγκ
2
γC

ðνÞ
αγ;βγe

−λνjtj; ð11Þ

where the coefficients of the fourth-rank tensorsCðνÞ can be
expressed simply in terms of the eigenvalues λν and entries
of M (see Supplemental Material [48]). From this expres-
sion, we also define the static charge structure factors
SαβðqÞ ¼ Fαβðq; 0Þ as well as the dynamic charge structure
factors in frequency space: F̃αβðq;ωÞ≡ R

dte−iωtFαβðq; tÞ.
The total structure factor is Ftotðq; tÞ ¼P
α;β∈ fI;Sg½ðCtot

α Ctot
β Þ1=2=ðCtot

I þ Ctot
S Þ�Fαβðq; tÞ. We can

verify that our model fulfills the electroneutrality condition,
as limq→0 Ftotðq; tÞ ¼ 0 for any t. In particular, the static
total structure factor follows the second moment Stillinger-
Lovett condition StotðqÞ ¼ Ftotðq; 0Þ ∼ ε0kBTq2, which
reflects the fact that our system is a perfect conductor
[71]. In addition, in the static limit, we get the ion-ion
charge structure factor SIIðqÞ ∼q→0 ðzeÞ2q2εw=κ2I , with εw
the permittivity of pure solvent in this model, which will be
discussed below. This expression coincides with the one
that is obtained by considering ions in an implicit solvent

of permittivity εw, where Fimpðq; tÞ ¼ ½ðzeÞ2q2=ðq2 þ
κ2impÞ�e−DIðq2þκ2impÞt (with κ2imp ¼ ½2CIðzeÞ2=εwε0kBT�; see
Supplemental Material [48]), from which we deduce
Simp
II ðqÞ ∼q→0 ðzeÞ2q2=κ2imp.
Finally, to characterize the dynamics of the ions, we de-

fine the ionic relaxation time as τIIðqÞ ¼ F̃IIðq;ω ¼ 0Þ=
2FIIðq; t ¼ 0Þ. In the zero-q limit, the ionic relaxation time
of the implicit model is the Debye time, τimp

II ðq ¼ 0Þ ¼
ð1=DIκ

2
impÞ, while our models gives τIIðq ¼ 0Þ ¼

ð1=DIκ
2
impÞ þ ½ðεw − 1Þ=2εwDr

S�. This shows that explicit
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solvent molecules tend to increase the ionic relaxation time.
Note that the Debye model is retrieved when
Dr

S ≪ ðεw − 1ÞDIκ
2
imp=2εw, i.e., in the limit where solvent

molecules relax much faster than ions.
Dieletric susceptibility—Within linear response, if the

electrolyte is submitted to a small external field E0, the
polarization of the electrolyte reads, in Fourier space:
Pðq;ωÞ ¼ χPðq;ωÞ · E0ðq;ωÞ, and the ionic current
defined as jðr; tÞ ¼ P

ν¼�1

P
iðνzeÞvν

i ðtÞδ
�
r − rνi ðtÞ

�
(where vν

i is the velocity of the ith ion of species ν) is
related to the external field through jðq;ωÞ ¼
χ jðq;ωÞ · E0ðq;ωÞ, where χP and χ j are susceptibility
tensors characterizing the response of the solvent and of
the ions, respectively. The total susceptibility is χ ¼ χ P þ
ði=ωε0Þχ j [56]. Computing the susceptibility tensor from
microscopic and stochastic quantities is a subtle task that
has been discussed by many authors, both in the case of
pure dipolar solvent [43,57,58] and in the case of an
electrolyte [59,72,73]. Here, we will only be interested
in the jqj → 0 limit of the susceptibility tensor, in
which one gets [59] χ PðωÞ ¼ ðε0kBTVÞ−1½hPPið0Þ þR∞
0 dt eiωt(iωhPPiðtÞ þ hPjiðtÞ)� and χ jðωÞ ¼ ðkBTVÞ−1×R
∞
0 dt eiωt(hjjiðtÞ þ iωhPjiðtÞ) where we used the short-
hand notation hABiðtÞ ¼ limq→0hAðq; tÞ · Bð−q; 0Þi.
Importantly, all the correlation functions that appear in
these relations can be computed directly from our SDFT
approach (see Supplemental Material [48]).
Calibration of the model—To calibrate the three inde-

pendent parameters that describe our explicit solvent
[κSð0Þ,Dr

S and a], we compute the longitudinal permittivity
of pure water, i.e., in the limit CI → 0 of our model. It is
related to the susceptibility defined above through εLðωÞ ¼
1=½1 − χLðωÞ� [55], where χL is the longitudinal part of the
susceptibility tensor [74]. We get εLðωÞ ¼ ε0 þ ½ðεw − ε0Þ=
ð1 − iωτSÞ�, with τS¼1=2Dr

S and εw¼1þðp2CS=3ε0kBTÞ.
This Debye-like dependence of the permittivity on ω is to
be expected, since the polarization relaxes through a linear
damping term [see Eq. (8)] at our level of approximation.
Importantly, this provides an estimate of the relative
permittivity involved in the implicit description from
microscopic considerations and corresponds to the expres-
sion for a gas of interacting dipoles in the mean-field limit
[76]. Comparison with experimental data (Fig. 1, right)
yields εw ≃ 78.5ε0 and τ ≃ 10 ps, which enforces κSð0Þ ≃
12.4=a and Dr

S ≃ 0.05 ps−1. The value of a is chosen in
such a way that the (self-) translational diffusion coefficient
of water molecules DS ¼ a2Dr

S matches the values typi-
cally measured at 25 °C (2.3 × 10−9 m2 s−1): This imposes
a ≃ 2.14 Å. Consequently, given the expression of κSð0Þ,
the product p2CS is also fixed: If one imposes CS ≃ 55 M
(the typical molar concentration of water under normal
conditions), then one finds p ¼ 1.4 D, which is reasonably
close the value of the dipolar moment of a water molecule
(≃1.8 D in gas phase or ≃2.6 D in liquid phase [77]).

Numerical estimates—Using these numerical parame-
ters, we first compute the static structure factor of the ions
SIIðqÞ, and plot it in Fig. 2(a). We find that the expression
computed within our explicit solvent model is very close to
the expression that can be computed with the implicit
model approach, i.e., with the Debye screening length κimp:
This validates the model beyond the q ¼ 0 limit that was
employed for calibration. We also study the q dependence
of the dynamic charge structure factors [Fig. 2(b)] and split
the different contributions (ions, solvent, cross terms).
Importantly, and just like in molecular dynamics simula-
tions [42], we observe that the cross water-ion correlations,
which are negative, are sufficiently strong to cancel the
contributions from ions and solvent at small q. At large
wave vectors, the total dynamic structure factor is equal to
that of pure water, which tends to a constant, as expected in
the present case where short-range interactions between
molecules are ignored. For a fixed value of the wave vector
(q ¼ 0.14 Å−1, which corresponds to distances where
short-range interactions do not play a significant role,
and where our theory should be most valid), we plot the
frequency dependence of the dynamic structure factor and
obtain a good agreement with results from MD simulations

(a) (b)

(c) (d)

FIG. 2. (a) Static charge structure factor of the ions only, as a
function of the wave vector q. Results from our SDFT approach
are compared with the implicit solvent model with permittivity εw
(resp., ε0), i.e., with Debye length κimp (resp., κI). (b) Zero-
frequency dynamic charge structure factors, where the different
contributions are split. For comparison, the result for pure water
(CI ¼ 0) is shown. (c) Frequency dependence of the dynamic
charge structure factors for q ¼ 0.14 Å−1. (a)–(c) In these plots,
we consider a 1∶1 electrolyte of concentration CI ¼ 1.2 M.
Symbols: results from molecular dynamics simulations repro-
duced from Ref. [42]. (d) Imaginary part of the transverse and
longitudinal components of the total susceptibility tensor χ ðωÞ.
Dashed lines: σ0=ε0ω. See Supplemental Material [48] for other
numerical parameters.
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for the ionic contribution [Fig. 2(c)]: This validates our
approach beyond the static limit. The analysis of the other
contributions shows that, at large frequencies, the cross
contributions become subdominant and do not contribute
anymore to the total dynamic structure factor.
Finally, we turn to the dielectric response of the electro-

lyte. The imaginary parts of transverse and longitudinal
components of the susceptibility tensor χ ðωÞ are shown on
Fig. 2(d). The transverse components display crossovers at
the characteristic frequencies ∼DIκ

2
imp and ∼Dr

S, which are,
respectively, the Debye relaxation time of the ions and the
typical persistence of the orientation of thewater molecules.
This is consistent with previous observations from molecu-
lar simulations [40,41]. Finally, we retrieve that the small
frequency limit of the imaginary part of the susceptibility
divergence because of the overall conductivity of the system,
which is nonzero in the presence of ions. Indeed, one gets
Im½χαðωÞ� ∼ cασ0=ε0ω, where σ0 ¼ ε0DIκ

2
I is the ideal

conductivity of the ions in vacuum, and where cα ¼ 2 for
α ¼ L and cα ¼ 1 for α ¼ T.
Perspectives—The present framework opens new direc-

tions in the analytical description of experiments such as
NMR relaxation of quadrupolar ions [78,79] and ultrafast
spectroscopy probing solvation dynamics [33,39,80–83] in
electrolyte solutions. In addition, several directions could
be followed in order to refine the present theoretical
framework: (i) The short-range interactions between the
ions could be accounted for by combining SDFT with
closure schemes such as the mean spherical approximation
[84,85]. Although it is a challenging and longer-term
perspective, this could extend the relevance of our model
beyond the small-q limit, in particular, to compare the q
dependence of the solvent permittivity with alternative
approaches [43,86]. (ii) Hydrodynamic couplings between
the ions and the solvent could be incorporated, in order to
ensure momentum conservation within the solvent, as done
previously at the SDFT level without taking into account
the explicit polarization [11,19,21,22]. (iii) Accounting for
reactions, such as ion pairing or water autodissociation,
could be an interesting theoretical avenue to explore,
building on recent developments of SDFT [87].
(iv) Finally, going beyond the mean-field coupling between
the ionic and solvent densities could be of interest to
compute dielectric decrements [88,89] and solvent relax-
ation in the vicinity of ions.
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