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ABSTRACT
We consider a binary mixture of chemically active particles that produce or consume solute molecules and that interact with each other
through the long-range concentration fields they generate. We analytically calculate the effective phoretic mobility of these particles when
the mixture is submitted to a constant, external concentration gradient, at leading order in the overall concentration. Relying on an analogy
with the modeling of strong electrolytes, we show that the effective phoretic mobility decays with the square root of the concentration: our
result is, therefore, a nonequilibrium counterpart to the celebrated Kohlrausch and Debye–Hückel–Onsager conductivity laws for electrolytes,
which are extended here to particles with long-range nonreciprocal interactions. The effective mobility law we derive reveals the existence of
a regime of maximal mobility and could find applications in the description of nanoscale transport phenomena in living cells.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0203593

I. INTRODUCTION

“Chemically active” particles typically refer to micro- or nano-
objects that produce or consume smaller solute molecules and that
interact through the resulting concentration fields. They are found
at different length scales, from active colloids1,2 down to biologi-
cal molecules, and especially enzymes, which became paradigmatic
examples of nanomotors in the physical and chemical literature.3–5

From a theoretical perspective, chemically active particles have ini-
tially been studied under the angle of diffusiophoresis, i.e., through
their individual response to external or self-generated drive.6–18

More recently, the interactions between such particles, and the
resulting collective properties, have been investigated. Numerical
studies of mixtures of chemically active particles of different species
revealed their propensity to phase separate,19–21 their ability to form
complex supramolecular structures that affect their diffusivity,22–24

and quickly became an example of a system with nonreciprocal
interactions. Subsequent experimental realizations confirmed the
richness and complexity of these collective behaviors.25,26

From a theoretical perspective, explicit analytical results on col-
lective effects in such nonequilibrium mixtures are still scarce, due
to the technical difficulties raised in the modeling of chemically
active particles. Indeed, their pair interactions are generally long-
ranged and should typically be modeled as non-reciprocal.21,22 In
particular, the transport coefficients of chemotactic particles, which
characterize their response to external drive, have only been stud-
ied elusively, despite their importance in understanding situations of
biological interest, in which spatial heterogeneities are predominant
and govern spatial organization.27

Here, we rely on the analogy between the physics of chem-
ically active particles and that of strong electrolytes, as has been
elucidated in a number of different contexts,28,29 and we derive an
explicit expression for the effective mobility of chemotactic parti-
cles in a mixture made of two different species, with long-range,
unscreened interactions. In particular, we show that the hydrody-
namic and chemotactic interactions between the particles result in
a square root dependence of the effective mobility on the over-
all volume fraction of particles. Therefore, our result is an analog
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FIG. 1. A binary mixture of chemotactic particles placed in a gradient of solute
concentrations. As an example, we represent here the situation where parti-
cles of species 1 (resp. 2) represented in black (resp. gray) tend to produce
(resp. consume) solute molecules and migrate toward low (resp. high) solute
concentrations.

of the celebrated Kohlrausch30–32 or Debye–Hückel–Onsager33,34

conductivity laws for electrolytes, which are extended here to an
intrinsic non-equilibrium system, with nonreciprocal interactions.
We show that the approach to phase separation is associated with
a divergence of effective mobility and that the parameters that
tune the activity of the particles can optimize the mobility of the
particles.

II. MODEL
We consider a binary mixture of active, chemotactic par-

ticles (Fig. 1). There are N i particles of type i ∈ {A, B}, and
we denote by N = NA +NB their total number. Their positions
are denoted by ri

n, where n ∈ {1, . . ., N i} and we denote by
rN
= {rA

1 , . . . , rA
NA , rB

1 , . . . , rB
NB} the overall configuration. The overall

density of particles of type i is denoted by ni = N i/V , where V is the
volume of the system. We assume that each of the particles can be
a source or a sink of smaller solute molecules, whose local concen-
tration is denoted by c(r, t). The activity αi, which is homogeneous
to an inverse time, characterizes the rate at which the particles of
type i produce (if αi > 0) or consume (if αi < 0) solute molecules.
Throughout the paper, we will assume that the overall concentra-
tion of solute molecules is constant, i.e., the condition nAαA + nBαB
= 0 holds. This implies that αAαB < 0, i.e., one species is a producer
of solute molecules, while the other one is a consumer.

We assume that each particle interacts with the small solute
molecules (for instance, because of short-range repulsion interac-
tions) and, therefore, that diffusiophoretic effects occur: any gradi-
ent of solute concentration results in a net drift of the particles. We
will assume that particles of species A and B do not respond in the
same way to these gradients. Consequently, when coarse-graining
the dynamics by integrating out the degrees of freedom corre-
sponding to the solute molecules, the effective interactions between
A and B particles should be assumed to be generally non-reciprocal.
Namely, in this class of nonequilibrium systems, V j→i(r) repre-
sents the contribution to the drift velocity experienced by a particle
of species i originating from a particle of species j, when they are
separated by a distance r.

The starting point of our analysis is the N-body Smoluchowski
equation obeyed by P(rN ; t), namely, the probability of observing

the system in a given configuration rN at time t, which reads, in the
absence of external force,

∂t P(rN ; t) =
N

∑
k=1

⎧⎪⎪
⎨
⎪⎪⎩

Dσ(k)∇
2
rk P −∇rk ⋅ [PV(rk)]

−∇rk ⋅

⎡
⎢
⎢
⎢
⎢
⎣

P∑
k′≠k

Vσ(k′)→σ(k)(∣rk − rk′ ∣)

⎤
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

, (1)

where σ(k) denotes the species of particle k (for instance, σ(k) = A
if 1 ≤ k ≤ NA and σ(k) = B if NA + 1 ≤ k ≤ NA +NB), Di (connected
to the mobility Mi via Einstein relation) denotes the bare diffusion
coefficient of particles of species i. The second term in the sum rep-
resents advection by the solvent, whose velocity field is denoted by
V . Finally, the last term in the sum accounts for the net drift velocity
experienced by particle k.

We first analyze a mean-field approximation of the Smolu-
chowski [Eq. (1)]. To this end, we define the one-body densities
of particles of species i as ρi(ri

1, t) = ∫∏rk≠ri
1

drk P(rN , t). At the
mean-field level, the density of particles of type i obeys the following
equation (see Appendix A):

∂tρi(r, t) = Di∇
2ρi −∇ ⋅ [V(r)ρi] −∇ ⋅ [v

ph
i ρi], (2)

where the drift velocity v
ph
i contains the effect of all pair inter-

actions between the particles. For arbitrary interaction potentials
between the particles, it is, in practice, impossible to compute this
term. However, if we assume that the particles only interact through
the inhomogeneities of the solute field c(r, t) (i.e., if we neglect any
direct interactions such as short-range repulsion, which is acceptable
in the low-density limit), the quantity v

ph
i can be interpreted as a

diffusiophoretic velocity and computed using the classical theory by
Derjaguin and Anderson et al.6,7,13,35,36 Under these approximations,
one gets vph

i ≃ −μi∇c, where μi is phoretic mobility and character-
izes the response of the particle to inhomogeneities in the solute con-
centration (this typically holds for short-range interactions between
the chemotactic particles and the solute molecules). If μi > 0 (resp.
μi < 0), then particles of species i are directed toward (resp. away)
regions of lower concentrations. Within this framework, the drift
velocity then reads V j→i = −μi∇cj, where cj(r) is the solute concen-
tration at position r due to the sole presence of a particle of species
j at the origin.

III. “DEBYE–HÜCKEL” APPROXIMATION
To get insight from the analogy with electrostatics, we first

study the equilibrium distribution of chemotactic particles and
ignore the effect of solvent advection (V = 0). The densities
ρi obey the equation ∂tρi(r, t) = Di∇

2ρi +∇ ⋅ [(μi∇c)ρi]. The
solute density is the solution of the reaction-diffusion equation,
∂tc(r, t) = Ds∇

2c(r, t) +∑iαiρi(r, t), where Ds is the diffusion coef-
ficient of solute molecules. If these molecules diffuse very fast (for
instance, if they are very small compared to the particles, i.e., Ds
≫ DA, DB), one can assume that its concentration obeys the
following stationary equation:

−∇
2c(r, t) =

1
Ds
∑

i
αiρi(r, t), (3)
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which is analogous to Poisson’s equation for electrolytes. The map-
ping between the two classes of problems (chemotactic particles and
strong electrolytes) is detailed in Appendix B.

It is not possible to solve explicitly for the solute concentra-
tion c and the density of particles of type ρi since the equations
they obey are coupled nonlinearly. Linear stability analysis of this
set of equations was the object of past work,21,37 which revealed the
conditions under which such a mixture phase separates. In the sta-
tionary state, the densities ρi(r, t) can be expressed in terms of c as
ρi(r, t) ≃ ni exp (−β μi

Mi
c(r, t)), with β = (kBT)−1. This amounts to

assuming that each particle only interacts with the others through
the concentration field of solute molecules, which is acceptable in
the low-density limit. Using this expression of ρi in the stationary
equation for c yields the following Helmholtz equation:

−∇
2c(r, t) =

1
Ds
∑

i
αinie

−β μi
Mi

c(r,t). (4)

To solve for c, a possible strategy is to proceed by analogy with elec-
trostatic interactions and to apply a “Debye–Hückel approximation”
by linearizing the exponentials in the rhs of this equation and
neglecting terms of order c2, which is valid in the low-density limit
or when the strength of chemical interactions is typically smaller
than the thermal energy. Using the fact that the overall quantity
of solute is assumed to be constant (∑iαini = 0), one gets ∇2c(r, t)

= κ2c(r, t), where κ−1
= (∑i

αiβniμi
DsMi
)
−1/2

is a screening length, i.e., the
typical length over which the effect of the activity of a particle can
be felt. Note that depending on the choice of parameters, κ−2 may
be negative: this corresponds to the situation where the mixture of
chemotactic particles is unstable.21,37

IV. RESPONSE TO AN EXTERNAL
CONCENTRATION GRADIENT

We now assume that the chemotactic particles are placed in a
constant external gradient of solute concentration, which we denote
by G = −Δc

L êz , where Δc is the difference of concentrations imposed
at the two ends of the system and L is the typical size of the sys-
tem in the z direction. A particle of species i is then submitted to
the external drift velocity Vext

i = μi G. We denote by vi(G) the sta-
tionary velocity of a particle of type i along the z direction when
one applies a concentration gradient of magnitude G. The effec-
tive mobility of the particle is defined as μeff

i = lim G→0vi(G)/G and
is affected by the presence of other particles because of two main
effects:38 a “hydrodynamic” effect that originates from the viscous
drag in the suspension, and a “chemotactic” effect that originates
from the interactions mediated by the inhomogeneities in the spatial
distribution of solute molecules. Therefore, the velocity of a particle
of i is decomposed as vi = v

0
i + v

hyd
i + vchem

i . A similar decomposi-
tion has been used in the exact solution of non-reciprocal phoretic
interactions between two finite-sized colloids.39 In what follows, we
present the derivation of the two velocity incrementsvhyd

i andvchem
i .

A. Hydrodynamic contribution
From the “Debye–Hückel” approximation, we know that each

particle will be surrounded by a spherical cloud of “counter
particles,” of typical radius κ−1. Therefore, when a particle moves in

a concentration gradient, it also drags a large number of “counter
particles” with itself. The resulting hydrodynamic drag tends to
slow down the particle, which undergoes a drag force that will
typically be directed against Vext

i and is proportional to v
hyd
i . To esti-

mate the prefactor in front of vhyd
i , we approximate the cloud as a

sphere of radius κ−1, and by analogy with the drag experienced by
a solid sphere in the Stokes limit, we estimate the drag force acting
on the colloidal particle and its counter particles as −6πηκ−1v

hyd
i .

At the steady state, this force will be balanced against the drive
(μi/Mi)G. We then estimate the hydrodynamic drift velocity as
v

hyd
i ≃ −

μi

6πηMiκ−1 G.

B. Chemotactic contribution
When the considered particle moves (either because of the

applied external gradient or because of thermal fluctuations), it is
displaced from the center of its “cloud” of counter particles. Indeed,
the latter need some time to respond to the displacement of the cen-
tral particle and to re-arrange. The electrostatic analog to this effect
is the relaxation of a cloud of counterions to its spherical equilibrium
shape after it is perturbed by an external electric field. The particle
will tend to be brought back toward the center of the cloud and will
undergo a force directed against Vext

i . For a particle located at
r = 0, the resulting velocity increment vchem

i reads vchem
i

= −μi∇c′i ∣r=0
, where we denote by c′i = ci − c0

i the perturbation
induced on the equilibrium solute distribution by the external
field.

The perturbation to the solute distribution c′i(r, t) is computed
by treating the problem at the two-particle level, i.e., beyond the
mean-field approximation presented above. To this end, we define
the two-particle distribution fji(r1, r2; t), namely, the probability
to find a particle of type j at r1 and a particle of type i at r2 at
time t. It is related to the N-body distribution through f ji(r j

1, ri
2; t)

= ∫∏rk∉{ri
1 ,r j

2}
drk P(rN , t). Performing the corresponding integra-

tion on Eq. (1), and neglecting the three-body distributions as a
first approximation, yields the following equation for the two-body
distributions:

∂t fji(r1, r2; t) = Dj∇
2
r1 fji +Di∇

2
r2 fij

−∇r1 ⋅ fij μj(G −∇r1 c′j(0) −∇r1 ci(r1, r2))

−∇r2 ⋅ fji μi(G −∇r2 c′i(0) −∇r2 cj(r1, r2)), (5)

where we neglected the effect of solvent flow (V(r) ≃ 0) as we
assume that the effect of hydrodynamic entrainment is correctly
captured by the study of the hydrodynamic contribution detailed
above.

Assuming that the perturbation induced by the external drive
is small, we write the distribution functions as f ji(r1, r21) = f 0

ji(r)
+ f ′ji(r1, r21), where we denote r = ∣r2 − r1∣ and where f ′ji ≪ f 0

ji.
The equilibrium solute distribution is determined within our
“Debye–Hückel” approximation, i.e., in the limit or small concen-
tration or of sufficiently weak interactions, and the equilibrium pair
distribution is given by

f 0
ji(r) ≃ ninj(1 −

μi

kBTMi

αj

4πDs

e−κr

r
). (6)
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Importantly, note that non-reciprocal interactions translate into the
pair distribution functions, with fAB being generally different from
fBA. Next, under the assumption that the applied concentration field
is weak, we perform a perturbative expansion and only retain terms
in linear order in c′j and f ′ji. Taking the stationary limit of Eq. (5),
one gets

μiG ⋅ ∇r2 f 0
ji + μjG ⋅ ∇r1 f 0

i j − μininj∇
2
r2 c′j − μjninj∇

2
r1 c′i

−MikBT∇2
r2 f ′ji −MjkBT∇2

r1 f ′i j = 0. (7)

Finally, f ′i j is eliminated by using the analogous to Poisson’s equa-
tion written at linear order in the perturbation: −∇2c′j = 1

Ds
∑i

αi
n j

f ′i j .
One gets a set of coupled differential equations for the perturbations
c′i and c′j , which are solved to yield (see Appendix C)

(∇c′i)r=0 =
κ

12πDskBT
μ2

AαB/MA − μ2
BαA/MB

μA − μB

Q
1 +
√
Q

G, (8)

for i ∈ {A, B}, with the dimensionless number

Q = MAMB

MA +MB

μA − μB

μAMB − μBMA
. (9)

The resulting velocity increment of a particle of type i along direc-
tion êz is simply given by vchem

i = −μi(∇c′i)r=0. We emphasize that
Q may become negative, which would result in the chemotactic con-
tribution to mobility having a nonzero imaginary part. Interestingly,
and although we will not investigate the corresponding range of
parameters here, this could be the signature of emerging oscillatory
(underdamped) dynamics, in a similar vein to oscillatory instabilities
that have been reported elsewhere.40

V. EFFECTIVE MOBILITY
We now put together the hydrodynamic and chemotactic con-

tributions and give the expression of the effective mobility. We focus
on the situation where the A and B particles have the same size and,
therefore, the same mobilities M0 and diffusion coefficients D0 (this
implies Q = 1/2). The effective mobility can be rewritten in terms of
the variables η j ≡

3∣α j ∣μ j X j
4πDsD0a , where Xj = nj/(n1 + n2) is the fraction of

particles of species j and a is the radius of a particle. It reads

μeff
i

μi
= 1 −

√
φ[
√
ηA − ηB +

√
2 − 1

9
√

2
η2

AXA + η2
BXB

XAXB
√ηA − ηB

], (10)

where we assumed, with no loss of generality, that αA > 0,
αB < 0, and where φ ≡ 4

3πa3
(nA + nB) is the overall volume fraction

of chemotactic particles. Several comments follow: (i) The expres-
sion of the effective mobility given by Eq. (10) constitutes the central
result of this article. The result is valid at low densities, namely, at
order O(√φ) when φ≪ 1, and in the limit where the interactions
between the particles are sufficiently small as compared with the
thermal energy. With the choice of αAαB < 0, and in the absence
of external field, in the domain ηA > ηB, the suspension remains
homogeneous and the particles form small “molecules,” which self-
propel or rotate depending on their symmetry properties.22,23 On the
contrary, in the domain ηA < ηB, the suspension is unstable and sep-
arates into dilute regions and dense, large clusters.21 (ii) Note that, in

the limit we consider here, the effective mobility rescaled by its value
at infinite dilution μeff

i /μi is identical for both species. This identity is
not expected to be generally true and would not hold for higher con-
centrations, or stronger chemical gradients, beyond linear response.
(iii) As expected naively, the effective mobility decreases when the
volume fraction increases: collective effects generally hinder the
transport of chemotactic particles under the effect of an external
gradient. However, the mobility decays as the square root of vol-
ume fraction. This effect, which is a consequence of the square root
dependence of the screening length κ−1, is reminiscent of the cele-
brated conductivity laws in electrolytes, first intuited and observed
experimentally by Kohlrausch,30–32 and later derived theoretically
from microscopic considerations by Debye and Hückel—a theory
subsequently refined by Onsager.33,34 We believe that the present
result should be seen as an extension of this central result to a
more general setting, in which interactions are nonreciprocal and
intrinsically non-equilibrium.

Our analytical result [Eq. (10)] takes a simpler form in the case
of a “symmetric mixture” where nA = nB = n, i.e., XA = 0.5 (which
imposes αA = −αB = α, with α > 0). In this situation, one can define
the length ℓ = 3μAα

8πDsD0
, which is the typical distance at which the inter-

actions between chemotactic particles becomes comparable to the
thermal energy kBT. In this respect, it can be seen as analogous to the
“Bjerrum length” in electrostatics. With this definition, the effective
mobility has a more explicit expression and reads

μeff
i

μi
= 1 −

√
φ

√
ℓ

a
[
√

1 −M +

√
2 − 1

9
√

2
ℓ

a
1 +M2
√

1 −M
], (11)

where we define the ratio between the two mobilities M = μB/μA. In
the limit M→ 1 (i.e., when both species have comparable mobil-
ities, but opposite activities), we observe that the hydrodynamic
contribution to the mobility vanishes—this is expected, since all the
particles respond similarly to the imposed external gradient, and the
particles do not have to “drag” a cloud of counter particles anymore.
On the contrary, the chemotactic contribution increases in magni-
tude and significantly decreases the effective mobility: the formation
of large and cohesive clusters at the approach of the phase separa-
tion threshold tends to arrest the particles and hinder their response
to external perturbations. In the opposite limit M→ −∞ (i.e., for
a fixed value of μA, when the B particles have a very strong nega-
tive response), both hydrodynamic and chemotactic contributions
penalize the effective mobility: this is interpreted by the formation
of very cohesive “molecules” made of A and B “atoms,” which are
less sensitive to external gradients. The divergence of the mobility
ratio in this limit, which is singular and unphysical, could be regu-
larized by considering higher-order terms in our small-φ expansion.
Finally, since the effective mobility appears to be a decreasing func-
tion of M in both limits of M→ −∞ and M→ 1, one expects the
existence of a regime of optimal mobility.

We plot in Fig. 2 the effective mobility rescaled by its bare value
and by square root of concentration (μeff

i − μi)/(
√φμi), as given in

Eq. (10), as a function of the dimensionless variables ηA and ηB. For
XA = 0.5, the qualitative behavior that we read from Eq. (11) is con-
firmed by the plot in Fig. 2(a) and also holds for a more general
asymmetric mixture [Fig. 2(b)]: between the regimes two regimes of
ηA ≃ ηB and ηA ≪ ηB, in which the effective mobility is significantly
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FIG. 2. Effective mobility μeff
i of the chemotactic particles rescaled by its bare value μi and by the square root of concentration, as a function of the dimensionless variables

ηA and ηB, for different values of the relative fraction of A and B particles. (a) XA = 0.5. (b) XA = 0.1. The dashed gray lines represent the regime of maximum mobility. (c)
The same quantity represented as a function of ηA, for a fixed value of ηB (ηB = −0.8) and for XA = 0.5.

reduced, there exists a regime of optimal mobility. The relative con-
tributions of the hydrodynamic and chemotactic effects are shown
in Fig. 2(c), for a fixed value of ηB.

VI. CONCLUSION
We highlight the fact that the mobility law we derived through

an analogy with strong electrolytes is general and applies to chemo-
tactic particles at different length scales: from molecular machines,
such as enzymes (a few nanometers), to active colloids (a few
micrometers), the main hypothesis being that solute molecules dif-
fuse fast enough and equilibrate quickly. Our main result could
be of particular interest in biological situations, where phoretic
mechanisms and chemical interactions are known to govern spatial
organization and metabolic pathways.3,40–43 From a technical point
of view, we underline the formal analogy between the present sys-
tem and a simple electrolyte. Relying on classical electrochemistry
works opens the way to many analytical developments. For instance,
it would be particularly interesting to go beyond the dilute limit
and incorporate the effect of short-range repulsion between parti-
cles, which will predominate in concentrated suspensions. We could
rely on the large body of literature that has been devoted to this topic
in the context of electrolytic solutions.44–51
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APPENDIX A: MEAN-FIELD TREATMENT
OF THE N -BODY SMOLUCHOWSKI EQUATION

We start from the N-body Smoluchowski equation satisfied by
the distribution P(rN ; t) [Eq. (1) in the main text],

∂t P(rN ; t) =
N

∑
k=1

⎧⎪⎪
⎨
⎪⎪⎩

Dσ(k)∇
2
rk P −∇rk ⋅ [PV(rk)]

−∇rk ⋅

⎡
⎢
⎢
⎢
⎢
⎣

P∑
k′≠k

Vσ(k′)→σ(k)(∣rk − rk′ ∣)

⎤
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

. (A1)

With no loss of generality, we compute the one-body density asso-
ciated to the A particles: ρA(rA

1 , t) = ∫∏rk≠rA
1

drk P(rN , t), which
reads

∂tρA(r, t) = DA∇
2ρA −∇ ⋅ [V(r)ρA]

− (NA − 1)∇ ⋅ ∫ dr′ fAA(r, r′, t)VA→A(∣r − r′∣)

−NB∇ ⋅ ∫ dr′ fAB(r, r′, t)VB→A(∣r − r′∣), (A2)

where the two-body distributions are defined in the main text as

fji(r j
1, ri

2; t) = ∫ ∏

rk∉{ri
1 ,r j

2}

drk P(rN , t). (A3)

The non-reciprocal drift velocities are here assumed to orig-
inate from phoretic interactions.22 We assume that the particles
primarily interact through the production and consumption of
solute molecules, which yield an inhomogeneous distribution and
the resulting phoretic transport. The drift velocity can be deter-
mined following the classical approach by Derjaguin and Anderson
et al.6,7,35,36 Denoting by c(r, t) the solute concentration at position
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r and at time t, the phoretic velocity can be written as vph
A ≃ −μA∇c.

Within this approach, the mobility μA reads36

μA =
kBT
η ∫

∞

0
dz z(1 − e−ψAs(z)/kBT

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡λ2

A

, (A4)

where ψAs is the interaction potential between solute molecules and
the surface of the particles of species A and λA is usually called the
“Derjaguin length.” We emphasize that the “mobilities” μi (which
have dimension L5T−1) should not be mistaken with the mobilities
Mi [with dimension 1/(MT−1)] that are usually defined as the ratio
between velocity and force within the linear response.

APPENDIX B: ANALOGY WITH ELECTROSTATICS

In this appendix, we highlight the analogy between the system
under study and a binary electrolyte. Consider a binary electrolyte
made of N+ cations of charge e+ = z+e and N− anions of charge
e− = z−e. The concentration of the cations and anions are denoted
by n+ = N+/V and n− = N−/V , respectively, where V is the vol-
ume of the system. The electroneutrality condition then reads
n+e+ + n−e− = 0. The electrostatic potential in the solution obeys
Poisson’s equation −∇2φ(r) = ρ(r)/ε, where ρ(r) is the charge den-
sity at position r in the solution. Denoting by r+i (resp. r−i ), with
n = 1, . . ., N = N+ +N− being the position of the ions, the density of
ions of species i = ± is defined as ρi(r) = ∑Ni

n=1 δ(r − ri
n). With these

notations, Poisson’s equation is rewritten as

−∇
2φ(r) =

1
ε∑i

eiρi(r). (B1)

This is analogous to the equation satisfied by the concentration field
c in the main text [Eq. (3)].

We write the force experienced by an ion of species i located
at position r: Fi(r) = eiE(r) = −ei∇φ(r). This is analogous to the

pseudo-force introduced in the main text. However, for chemo-
tactic particles, the activity and response to field gradients are not
controlled by a unique parameter (which is the charge ei in the
electrostatic analogy). A consequence is that chemotactic particles
interact in a non-reciprocal way: the interaction exerted by a particle
of species i on a particle of species j is generally not the opposite of
that exerted by j on i. This is obviously not the case for ions. We sum-
marize the analogy between electrostatics and chemotactic particles
in Table I.

APPENDIX C: PERTURBATIVE RESOLUTION
OF THE TWO-BODY DYNAMICS

The starting point of our analysis is Eq. (5) in the main text,
which we consider in the stationary limit,

0 = Dj∇
2
r1 fji +Di∇

2
r2 fij

−∇r1 ⋅ fij μj(G −∇r1 c′j(0) −∇r1 ci(r1, r2))

−∇r2 ⋅ fji μi(G −∇r2 c′i(0) −∇r2 cj(r1, r2)). (C1)

We expand this equation at linear order in the perturbations c′j and
f ′ji. It is clear from the expression of the equilibrium distribution f i j

0

f 0
ji(r) ≃ ninj(1 −

μi

kBTMi

αj

4πDs

e−κr

r
) (C2)

that fji − ninj is of order μiαj/Mi so, in the expression
(μi/Mi) f ji∇r2 c j , fji is replaced by ninj. We use Eq. (C2) to
eliminate the terms of order 0, and we get, in linear order in the
perturbation,32

μiG ⋅ ∇r2 f 0
ji + μjG ⋅ ∇r1 f 0

i j − μininj∇
2
r2 c′j − μjninj∇

2
r1 c′i

−MikBT∇2
r2 f ′ji −MjkBT∇2

r1 f ′i j = 0, (C3)

TABLE I. Analogy between the description of chemotactic particles and strong electrolytes.

Chemotactic particles Electrolytes

Ds: diffusion coefficient of solute molecules ε: dielectric permittivity

αi: chemical activity ei: charge (source in Poisson’s equation)

μi: response to a chemical gradient ei: charge (response to an electric field)

ci ∝ αi: solute concentration due φi ∝ ei: electrostatic potential
a particle of speciesi due to the presence of an ion i

G = −∇c: applied “chemical” field E = −∇φ: applied electric field

V j→i = −μi∇cj ∝ μiαj: velocity Fj→i = −ei∇φj ∝ eiej: force undergone
of a particle of species idue to the presence by an ion of species i due to the presence
of a particle of species j of an ion of species j

κ−1
= (∑i

αiβniμi
DsMi
)
−1/2

: screening length κ−1
D = (∑i

nie2
i

kBTε)
−1/2

: Debye screening length

of chemical interactions
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where we used the assumption that the external gradient is constant
(∇ ⋅G = 0). This equation is now used to compute the chemotac-
tic or “relaxation” effect. Since the external gradient imposed on
the solution is in the z direction, we write G = Gêz . We rewrite
all the quantities in terms of the distance between the two parti-
cles r = r2 − r1 and replace the gradient operators as ∇r2 = ∇r and
∇r1 = −∇r (in what follows, we drop the index r for clarity). We use
the following symmetry relations:

c′i(r) = −c′i(−r), (C4)

f ′ij(r) = − f ′ji(−r). (C5)

We keep in mind that generally f 0
i j(r) ≠ f 0

ji(r). We ignore the
dependence on the solvent velocity field V since the effect of
hydrodynamics is considered separately. We obtain

μi G
∂

∂z
f 0

ji − μj G
∂

∂z
f 0

i j − μininj∇
2c′j + μjninj∇

2c′i

− (Mi +Mj)kBT∇2 f ′ji = 0. (C6)

The derivative of f 0
ji is computed using Eq. (6),

∂

∂z
f 0

ji = −ninj
μj

kBTMj

αi

4πDs

∂

∂z
(

e−κr

r
). (C7)

Then, the perturbations f ′ji are eliminated and replaced by c′j using
Poisson’s equation written at linear order in the perturbation,

−∇
2c′j =

1
Ds
∑

i

αi

nj
f ′ji. (C8)

Multiplying Eq. (C6) by αi/nj, dividing by (Mi +Mj), and summing
over i yields

∇
4c′j −

1
kBTDs

∑
i

μiniαi

Mi +Mj
∇

2c′j

+
1

kBTDs
∑

i

μjniαi

Mi +Mj
∇

2c′i =

−
1

kBTDs
∑

i

αi

nj(Mi +Mj)
(μi G

∂ f 0
ji

∂z
− μj G

∂ f 0
i j

∂z
). (C9)

The rhs can be made explicit by using Eq. (C7). This yields a closed
set of linear equations for the perturbations to the perturbations c′i ,

∇
4c′j −

1
kBTDs

∑
i

μiniαi

Mi +Mj
∇

2c′j

+
1

kBTDs
∑

i

μjniαi

Mi +Mj
∇

2c′i =
1

4π(kBTDs)
2∑

i

αi

Mi +Mj

× (
niμ2

i αj

Mi
−

niμ2
jαi

Mj
)
∂

∂z
(

e−κr

r
)G. (C10)

For an arbitrary number of species, Eq. (C10) can be solved by
resorting to a matrix formalism.34 Here, we focus on the case where
there are only two species in the mixture. We specify Eq. (C10) with
j = A and we eliminate c′B. To this end, we multiply Eq. (C10) by

njαj and sum over j. This yields ∑ j n jα j∇
4c′j = 0. Since c′j and its

Laplacian must remain finite and vanish for r →∞, this implies
∑ j n jα j∇

2c′j = 0, i.e., when there are only two species, nAαA∇
2c′A

+ nBαB∇
2c′B = 0. We obtain

∇
4c′A −

1
kBTDs

μAnAαA + μBnBαB

MA +MB
∇

2c′A

=
G

4π(kBTDs)
2

αBnB

MA +MB
(
μ2

BαA

MB
−
μ2

AαB

MA
)
∂

∂z
(

e−κr

r
).

(C11)

We define

κ̃ 2
=

1
DskBT

μAnAαA + μBnBαB

MA +MB
, (C12)

which has the dimension of an inverse square length. Using the
global conservation of the quantity of solute, nAαA + nBαB = 0, we
find that κ̃ 2 is related to the screening length through

κ̃ 2
=

MAMB

MA +MB

μA − μB

μAMB − μBMA
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≡Q

κ2, (C13)

where Q is dimensionless. We also introduce

G̃ = 1
4πDskBT

μ2
AαB/MA − μ2

BαA/MB

μA − μB
G. (C14)

We then get

∇
4c′A − κ̃

2
∇

2c′A = G̃κ̃ 2 ∂

∂z
(

e−κr

r
). (C15)

The solution of this differential equation with appropriate
boundary conditions reads (see Appendix D), as an expansion in
powers of r,

c′A =
G̃κ̃ 2

κ̃ 2
− κ2 (−

κ − κ̃
3

z +
κ2
− κ̃ 2

8
rz + O(r2

)). (C16)

We are interested in the concentration gradient created by the
perturbation of the ionic atmosphere, which reads

(∇c′A)r=0 =
G̃κ
3

Q
1 +
√
Q

. (C17)

The resulting velocity increment of a particle of type i along
direction êz is

vchem
i = −μi(∇c′1)r=0, (C18)

= −μi
κ
3

1
4πDskBT

μ2
AαB/MA − μ2

BαA/MB

μA − μB

Q
1 +
√
Q

G, (C19)

which is the expression given in the main text [Eq. (8)].
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APPENDIX D: SOLUTION OF THE DIFFERENTIAL
EQUATION (C15)

In this appendix, we give the solution of the differential
equation (C15). First, using the relation

∇
2
(

e−κr

r
) =

1
r2

∂

∂r
[r2 ∂

∂r
(

e−κr

r
)] = κ2 e−κr

r
, (D1)

it is clear that a particular solution of Eq. (C15) is

c′A =
G̃κ̃ 2

κ2
(κ2
− κ̃ 2
)

∂

∂z
(

e−κr

r
). (D2)

The general solution is

c′A =
G̃κ̃ 2

κ2
− κ̃ 2

∂

∂z
(

e−κr

κ2r
+ A1

eκ̃ r

r
+ A2

e−κ̃ r

r
+ A3r2

+
A4

r
). (D3)

For the potential to remain bounded at r →∞, one imposes
A1 = A3 = 0. Moreover, for ∇2c′A to remain finite at r = 0, one sets
A2 = −1/κ̃ 2. For c′A to remain finite at r = 0, one needs A4 = 1/κ̃ 2

− 1/κ2. We then get

c′A =
G̃κ̃ 2

κ2
− κ̃ 2

∂

∂z
(

1 − e−κ̃ r

κ̃ 2r
−

1 − e−κr

κ2r
). (D4)

This leads to Eq. (C16).
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