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Single-file transport refers to the motion of particles in a narrow channel, such that they cannot bypass
each other. This constraint leads to strong correlations between the particles, described by correlation
profiles, which measure the correlation between a generic observable and the density of particles at a given
position and time. They have recently been shown to play a central role in single-file systems. Up to now,
these correlations have only been determined for diffusive systems in the hydrodynamic limit. Here, we
consider a model of reflecting point particles on the infinite line, with a general individual stochastic
dynamics. We show that the correlation profiles take a simple universal form, at arbitrary time. We illustrate
our approach by the study of the integrated current of particles through the origin, and apply our results to
representative models such as Brownian particles, run-and-tumble particles and Lévy flights. We further
emphasise the generality of our results by showing that they also apply beyond the 1D case, and to other
observables.

DOI: 10.1103/PhysRevLett.132.037102

Introduction.—Single-file transport, where particles
move in narrow channels with the constraint that they
cannot bypass each other, has become a fundamental model
for transport in confined systems [1–5]. Experimentally,
this situation has been observed in various physical,
chemical, or biological systems, such as zeolites, colloidal
suspensions, or carbon nanotubes [3–6]. Theoretically, it is
a central field of statistical physics, relevant both at
equilibrium and out of equilibrium [7,8]. In this context,
two key observables have received a notable attention:
(i) the integrated current through the origin Qt (defined as
the number of particles that have crossed the origin from
left to right, minus those from right to left, up to time t) [9–
15], and (ii) the position Xt of a tracer [1,2,16–26], which
can be monitored experimentally at various scales [3–5].
Because the order of the particles is conserved at all

times, strong correlations between these observables and
the density of particles ρðx; tÞ emerge. For instance, an
increase of Qt imposes a density at the right of the origin
higher than average, and a lower on the left. A similar effect
occurs with Xt: a large displacement of the tracer in a given
direction involves the displacement of more and more
particles in the same direction. This leads to a striking
subdiffusive behavior hX2

t i ∝
ffiffi
t

p
[16] in contrast with the

regular diffusion hX2
t i ∝ t.

Despite their importance, the quantification of the
coupling between Qt or Xt and ρðx; tÞ remains a broadly
open question. Recently, they have been characterized for
the symmetric exclusion process, and other paradigmatic

models of single-file diffusion [24–26]. In addition to their
clear physical relevance, these correlations have also
acquired a technical importance since they have been
shown to satisfy a closed equation for these systems
[24–27]. However, these results are limited to (i) the case
of diffusive systems (in which the individual particles have
a diffusive motion), (ii) the long time behavior, and (iii) the
specific case of Xt and Qt.
Here, by considering a model of reflecting point particles

on the infinite line, with an arbitrary individual stochastic
dynamics, we overcome these limitations. We show that the
correlation profiles take a simple universal form (with
respect to the individual motion of the particles), at
arbitrary time, and for a large class of observables (as
defined below).
More precisely, we illustrate our approach by the study

the integrated current of particles through the origin, and
apply our results to representative processes that go beyond
Brownian particles, such as (i) run-and-tumble particles,
which are a key model to describe active transport [29,30]
and (ii) Lévy flights, which is an emblematic model of
superdiffusion [31]. We further emphasize the generality of
our results by showing that they also apply beyond the 1D
case, and to other observables.
Model.—We first consider N particles on the real line,

with position fxiðtÞgi¼1;…;N at time t. In a second step, we
will take the thermodynamic limit N → ∞. Initially, the N
particles are independently picked from a density ρ0ðxÞ,
normalized such that

R
ρ0ðxÞdx ¼ N. Each particle has a
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stochastic dynamics in time, described by its propagator
GtðxjyÞ, i.e., the probability of finding the particle at
position x at time t, knowing that it was at position y at
time 0. When this dynamics leads to a crossing between
two particles, they are simply exchanged, leading to a
reflection of the particles. This dynamics can be mapped
onto the one of noninteracting particles (see Fig. 1). While
this formally applies to any propagator, this is especially
relevant for Markovian dynamics, since the definition of
the contact is more tricky in the non-Markovian case. The
time evolution of the particles being independent from their
initial distribution, we define two different types of
averaging: (i) the average over the time evolution of the
particles, denoted for any function f,

hfðfxiðtÞgÞi ¼
Z YN

i¼1

dxn Ktðfxigjfxið0ÞgÞ fðfxigÞ; ð1Þ

withKt theN-particles propagator, and (ii) the average over
the initial positions,

fðfxið0ÞgÞ ¼
Z YN

n¼1

dyn
ρ0ðynÞ
N

fðfyigÞ: ð2Þ

Although our approach can be applied to many observ-
ables, we will focus for concreteness on the integrated
current through the origin, which measures the variation of
the number of particles on the positive axis,

Qt ¼
X
i

fΘ½xiðtÞ� − Θ½xið0Þ�g; ð3Þ

whereΘ is the Heaviside step function. We are interested in
the statistical properties of this observable, and its corre-
lations with the global density of particles

ρðx; tÞ ¼
X
i

δ½x − xiðtÞ�: ð4Þ

These two quantities are indeed expected to be strongly
correlated. These correlations are encoded in the joint

cumulant generating function ln heλQtþχρðx;tÞi, where λ
and χ are the parameters of the generating function. We
have used here the annealed averaging, as usually defined
in statistical mechanics, which corresponds to averaging
over both the time evolution and all the initial positions. For
simplicity, we will focus on the lowest orders in χ, which
are the cumulant generating function of the integrated

current, ψAðλ; tÞ≡ limN→∞ ln heλQti, and the correlation
profile [24]

wAðx; λ; tÞ≡ lim
N→∞

hρðx; tÞeλQti
heλQti

: ð5Þ

These correlation profiles have been shown to play an
important role, since they verify simple closed equations
for several important models of single-file systems [24–26].
We also consider the case of a quenched initial condition,

which corresponds to averaging over the time evolution of
the typical initial positions of the particles. The initial
condition is well-known to play a key role in single-file
systems, as exemplified by “everlasting” effects on various
observables [19,20,32–34]. In this case, the joint cumulant

generating function is lnheλQtþχρðx;tÞi. At lowest orders in χ,
this gives the quenched cumulant generating function

ψQðλ; tÞ≡ limN→∞lnheλQti, and the quenched correlation
profile

wQðx; λ; tÞ≡ lim
N→∞

hρðx; tÞeλQti
heλQti : ð6Þ

Results.—The key ingredient is the joint propagator of
the N particles, which takes the form [35]

Ktðx⃗jy⃗Þ ¼
1

N!

X
σ

YN
i¼1

GtðxijyσðiÞÞ; ð7Þ

where the sum runs over all permutations σ of the N
particles. Computing first the averages [(1), (2)] and then
taking the thermodynamic limit N → ∞ [36], we obtain
that the cumulant generating function and the correlation
profiles take a simple universal form (see Supplemental
Material (SM) [37] for details of the derivation). In the
annealed case,

ψAðλ; tÞ ¼
Z

dy ρ0ðyÞ
Z

½G̃ðλÞ
t ðxjyÞ −GtðxjyÞ�dx; ð8Þ

wAðx; λ; tÞ ¼
Z

ρ0ðyÞG̃ðλÞ
t ðxjyÞdy; ð9Þ

where we have defined the tilted propagator

G̃ðλÞ
t ðxjyÞ ¼ eλΘðxÞGtðxjyÞe−λΘðyÞ: ð10Þ

FIG. 1. The motion of reflective particles (illustrated by the
arrows) can be mapped onto the motion of noninteracting
particles (solid and dashed lines). Left: illustration with run-
and-tumble particles, which move at a constant speed and flip
their direction at random times. When two particles collide, they
flip their direction. Right: Lévy flights. When a particle collides
with another, it stops and the next particle is pushed. This can lead
to a series of collisions.
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Similarly, in the quenched case,

ψQðλ; tÞ ¼
Z

dy ρ0ðyÞ ln
�Z

∞

−∞
G̃ðλÞ

t ðxjyÞdx
�
; ð11Þ

wQðx; λ; tÞ ¼
Z

dy ρ0ðyÞ
G̃ðλÞ

t ðxjyÞR∞
−∞ G̃ðλÞ

t ðzjyÞdz
: ð12Þ

These expressions hold for any propagator Gt of an
individual particle, for any initial density of particles ρ0,
and at arbitrary time t. They constitute the main results of
this Letter. Note that our results hold in presence of external
forces (a situation studied for instance in [38]) [39]. The
key point of our derivation is that all the particles have the
same dynamics (with the requirement that the memory of
the past is lost upon collision), and feel the presence of the
other particles only when a collision occurs. The only
ingredient needed is the one particle propagator Gt, either
analytically or numerically [40]. We now give the example
of run-and-tumble particles, for which the propagator is
known explicitly. This will allow us to discuss a concrete
example of the physics of these correlation profiles.
Formulas for the cases of Brownian particles and Lévy
flights are given in SM [37].
Application: Run-and-tumble particles.—We consider a

system of run-and-tumble particles, which is an important
model of active particles, involved in various contexts
[29,30]. These particles move at constant speed v0, and flip
their direction of motion with rate γ. When two particles
collide, they are reflected (see Fig. 1). For simplicity, we
will consider a step initial density of particles ρ0ðxÞ ¼
ρþΘðxÞ þ ρ−Θð−xÞ. The Laplace transform of the propa-
gator of an individual particle takes a simple form [29]. We
can easily obtain the annealed profile and cumulant
generating function in the Laplace domain since the
expressions (8) and (9) are linear in the propagator. The
inverse Laplace transform can be computed explicitly using
the expressions given in [12], and we get ψAðλ; tÞ ¼
ðω=2Þv0t e−γt½I0ðγtÞ þ I1ðγtÞ�, where we have denoted
ω ¼ ρþðe−λ − 1Þ þ ρ−ðeλ − 1Þ, by analogy with the single
parameter identified in the simple exclusion process [9],
and Iν is a modified Bessel function. Similarly, the corre-
lation profile reads

wAðx> 0;λ; tÞ¼ ρþþρ−eλ−ρþ
2

Θðv0t−xÞ

×

0
@e−

γx
v0 þ γx

v0

Z v0t
x

1

e−
γxT
v0 I1

�γx
v0

ffiffiffiffiffiffiffiffiffiffiffiffi
T2−1

p �
ffiffiffiffiffiffiffiffiffiffiffiffi
T2−1

p dT

1
A:

ð13Þ

This profile, represented in Fig. 2, quantifies the correlation
between the observable Qt and the density of particles
ρðx; tÞ. When λ > 0, wAðx > 0; λ; tÞ ≥ ρþ, indicating that

an increase of the current yields an increase of the density at
the right of the origin. We emphasise that (i) our approach
captures the full dynamics of the profile wA (13), illustrated
in Fig. 2. In particular it presents a sharp cutoff at x ¼ v0t,
which is a consequence of the finite speed v0 of the
particles, showing that Qt and ρðx; tÞ are decorrelated for
x > v0t. (ii) The dependence of the profile (13) in ρþ, ρ−
and λ is in fact a general feature that holds for any
propagator Gt, and is only a consequence of the choice
of the observable Qt and the initial step of density ρ0ðxÞ.
We now demonstrate that our approach can be extended

in several important directions (see SM [37] for details).
Extension: Other geometry.—Our approach can be

extended beyond the one-dimensional case, in particular
to any tree geometry. An important example that has gene-
rated many works is the comb lattice [41–43]. Comb
structures have been developed to represent diffusion in
critical percolation clusters, with the backbone and teeth of
the comb mimicking the quasilinear structure and the dead
ends of percolation clusters [44]. More recently, the comb
model has been used to account for transport in real
systems such as spiny dendrites [45], diffusion of cold
atoms [46], and diffusion in crowded media [47]. It is a
two-dimensional lattice in which all the links parallel to the
x axis have been removed, except those on the axis itself,
called the backbone (see the inset in Fig. 3). The propagator
of a particle performing a random walk on this lattice is
given in [42]. In the continuous limit, the results [(8), (9),
(11), and (12)] straightforwardly extend to this case, and
leads to the correlation profile wAðr⃗; λ; tÞ shown in Fig. 3. It
presents a different scaling with time in the two directions x
and y, because particles can diffuse in the teeth of the comb,
but horizontal motion is slowed down because it is only
possible at y ¼ 0.
Extension: Other observables.—The above discussion

can be extended to observables of the form

Ot½f; g� ¼
X
i

ff½xiðtÞ� − g½xið0Þ�g; ð14Þ

FIG. 2. Annealed correlation profile wA (13) for run-and-
tumble particles, with v0 ¼ 1 and γ ¼ 1. Left: profile as a
function of x for different times. Right: profile as a function
of the rescaled variable x=

ffiffi
t

p
at different times. For t → ∞, it

converges to the profile for diffusive particles (solid black lines),
with a diffusion constant D ¼ v20=ð2γÞ ¼ 1

2
.
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where f and g are two given functions, with fðxÞ ≃
x→�∞

gðxÞ
to ensure convergence of the sum. The case of the
integrated currentQt corresponds to f ¼ g ¼ Θ. In general,
the above results [(8), (9), (11), and (12)] still hold, but with
the tilted propagator

G̃ðλÞ
t ðxjyÞ ¼ eλfðxÞGtðxjyÞe−λgðyÞ: ð15Þ

This provides in particular the profiles in the case of a
generalized current JtðXÞ, defined by fðxÞ ¼ Θðx − XÞ and
gðxÞ ¼ ΘðxÞ. This observable measures the difference
between the number of particles at the right of X at time
t with the number of particles on the positive axis at t ¼ 0.
It has proved to be especially relevant since it can be used to
find the position Xt of a tracer particle [48,49], given by
JtðXtÞ ¼ 0, meaning that no particle can cross the tracer.
However, this only provides the final position Xt, and not
the displacement Xt − X0 (X0 being the position of the first
particle to the right of the origin, which is random).
Extension: Tracer particle.—Nevertheless, our method

can be adapted to directly study the displacement of a tracer
(placed initially at the origin for simplicity). So far, the only
available studies concern the distribution of the tracer only
[35,50], and not its correlations with the other particles,
which are our main focus here. Extending the ideas of
[1,20,35,50,51], the correlation profiles can be computed
by noticing that the tracer can be mapped onto the “middle”
particle of the system of noninteracting particles intro-
duced above.
We now consider a finite system of 2N þ 1 particles,

with initially N particles on the negative axis [positions
x−nðtÞ], N particles on the positive axis [positions xnðtÞ],
and a tracer initially at the origin [x0ðtÞ]. We define the
average over the initial positions as

fðfxið0ÞgÞ ¼
Z

0

−∞

YN
n¼1

ρ0ðy−nÞdy−n
N

Z
∞

0

YN
n¼1

ρ0ðynÞdyn
N

fðy−N;…; y−1; y0 ¼ 0; y1;…yNÞ: ð16Þ

The average over the time evolution is still given by (1).
The probability of finding the tracer at position X at time t,
with initially the particles at positions fxið0Þg can be
obtained by imposing that there are still N particles to the
left of the tracer, and N to the right,

PtðXjfxið0ÞgÞ≡ hδðX − x0ðtÞi ∝
Z

X

−∞

YN
n¼1

dx−n

×
Z

∞

X

YN
n¼1

dxn Ktðfxngjx0¼Xjfxið0ÞgÞ:

ð17Þ

Using the expression of the joint propagator (7), and
averaging over the time evolution and the initial positions
(assumed to be annealed for simplicity), we obtain the
distribution of x0ðtÞ in the thermodynamic limit,

PtðXÞ≡ lim
N→∞

hδ½X−x0ðtÞ�i¼
Z

π

−π
ftðX;θÞeϕtðX;θÞdθ; ð18Þ

where the integration over θ enforces the noncrossing
constraint. The functions ft and ϕt are expressed in terms
of the propagator Gt (assumed translationally invariant and
symmetric), its integral FtðzÞ ¼

R∞
z Gtðxj0Þdx, and the

initial density of particles ρ0. The exact expressions are
given in SM [37]. The distribution (18) extends to the out-
of-equilibrium case of an arbitrary initial density ρ0, such as
a step initial condition, the result of [50] obtained in the
equilibrium case of a constant density. Here, we obtain in
addition the full spatial dependence of the correlations
between the position of the tracer and the density of
surrounding particles, which takes the following simple
and universal form:

w̃Aðx; X; tÞ≡ lim
N→∞

hρðx; tÞδ½X − x0ðtÞ�i
hδ½X − x0ðtÞ�i

¼ α�t ðXÞGtðxj0Þ þ β�t ðXÞρ∓Ftð�xÞ
þ ρ�Ftð∓ xÞ; ð19Þ

where the superscript � stands for x≷X, with α�t and β�t
given explicitly in SM [37]. We stress that the spatial
dependence of these profiles is fully encoded in the
propagator Gt (and its integral Ft). Note that we have
considered in Eq. (19) here conditional profiles, which
measure the mean density of particles conditioned on
having observed the tracer at X at time t. In contrast,
we have previously considered correlation profiles

hρðx; tÞeλx0ðtÞi=heλx0ðtÞi. The two formulations are equiv-
alent in the limit t → ∞ [25,37], but not at arbitrary time. It
turns out that the correlation profiles are more convenient to
study observables of the form (14), while the conditional
profiles are more suited to study tracer particles, since they

FIG. 3. Correlation profile wA½r⃗ ¼ ðx; yÞ; λ; t� for random
walkers on a comb lattice in the annealed case (represented on
the right plot), in the continuous limit. Left: 2D representation.
The profile is a scaling function of x=t1=4 and y=

ffiffi
t

p
. Right: profile

as a function of x for fixed values of y.

PHYSICAL REVIEW LETTERS 132, 037102 (2024)

037102-4



take a simple form. These conditional profiles are shown in
Fig. 4 for reflective Brownian particles. At long times, they
reach their asymptotic values computed in [24], but at
arbitrary times they have a more complex structure, mostly
due to the presence of the tracer at the origin at t ¼ 0 [first
term in (19)].
Extension: Two tracers.—Our approach can be extended

to the important and largely unexplored situation of two
tracers of positions X1ðtÞ and X2ðtÞ. The only available
studies in single-file systems concern the symmetric exclu-
sion process and its limits [52–55], and the distance between
two different particles at different times [56], which does not
gives access to the joint position of two tracers at the same
time. We still obtain a simple form for the density profile
conditioned on observing the first tracer atX and the second
tracer at Y. As a byproduct, we obtain the strikingly simple,
universal, and to the best of our knowledge new expression
for the covariance of the displacements of two tracers,

CovðX1; X2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðX1ÞVarðX2Þ

p ≃
t→∞

R∞
z dx

R∞
x dy gðyÞR

∞
0 dx

R
∞
x dy gðyÞ ; ð20Þ

where z ¼ ½X1ð0Þ − X2ð0Þ�=σt, and σt the long time scaling
of the propagator GtðxjyÞ ¼ g½ðx − yÞ=σt�=σt.
Conclusion.—Wehave shown that the correlation profiles

in single-file systems take the strikingly simple universal
form [(9)–(12)]. The approach is general and applies to (i) a
broad range of dynamics (including with external forces or
non-Markovian dynamics provided that the memory is lost
upon collision); (ii) arbitrary time (note that these results are
not accessible via the classical macroscopic fluctuation
theory [57], which is limited to the large time behavior of
diffusive systems [58]); (iii) different initial conditions
(annealed and quenched [59]); (iv) various observables
[the form (14) includes the joint statistics of several currents
[37] ]; and (v) geometries not restricted to the single-file
constraint (illustrated by the comb geometry). In addition,
beyond the clear physical relevance of the correlation
profiles, the simplicity of (9)–(12) further highlights their
key role to describe transport properties in confined geom-
etry [13–15,18,24–26,28,48,49].
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