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Isotropic active colloids: explicit vs. implicit
descriptions of propulsion mechanisms

Jeanne Decayeux, Jacques Fries, Vincent Dahirel, Marie Jardat and
Pierre Illien

Modeling the couplings between active particles often neglects the possible many-body effects that

control the propulsion mechanism. Accounting for such effects requires the explicit modeling of the

molecular details at the origin of activity. Here, we take advantage of a recent two-dimensional model

of isotropic active particles whose propulsion originates from the interactions between solute particles

in the bath. The colloid catalyzes a chemical reaction in its vicinity, which results in a local phase

separation of solute particles, and the density fluctuations of solute particles cause the enhanced

diffusion of the colloid. In this paper, we investigate an assembly of such active particles, using (i) an

explicit model, where the microscopic dynamics of the solute particles is accounted for; and (ii) an

implicit model, whose parameters are inferred from the explicit model at infinite dilution. In the explicit

solute model, the long-time diffusion coefficient of the active colloids strongly decreases with density,

an effect which is not captured by the derived implicit model. This suggests that classical models, which

usually decouple pair interactions from activity, fail to describe collective dynamics in active colloidal

systems driven by solute-solute interactions.

1 Introduction

During the past decades, self-propelled colloids have become a
paradigmatic model to study non-equilibrium transport in
complex environments.1–4 In these systems, a modification of
the chemical composition around the surface of the colloidal
particle typically generates concentration or electric gradients,
which result in an effective propulsion of the particle. Such
mechanisms have been particularly studied (both experimen-
tally and theoretically) in the case of Janus particles, where
only a part of the colloidal surface catalyzes the chemical
reaction.5–16 Isotropic particles can also self-propel in specific
cases, as a consequence of a persistent instability within the
surrounding of the particle.17–29 A recent original mecha-
nism30,31 explored in our group sheds light on the possible
interplay between non-equilibrium condensate formation (or
mesoscale phase separation) and enhanced diffusion. More
precisely, when metastable droplets of solute particles form
in the vicinity of the surface of an isotropic colloid, they
generate forces that push the colloid.

The physics of active colloids becomes particularly rich
when it comes to their collective properties. The interplay
between the structure of the suspension and the activity of
the colloidal particles has been addressed in such systems,

revealing activity-dependent clustering and phase separation of
the active particles themselves (usually called motility-induced
phase separation32). In the situation where the propulsion of
the active particles relies on mescoscale phase separations, it is
expected that the latter will be related to the collective proper-
ties of the colloids at larger length scales: both effects are
interlinked, and connected to dynamical properties.

However, in order to describe the dynamics of a suspension
of active colloidal particles, most models rely on an implicit
description of the molecules surrounding the active colloidal
particles, and in particular of the solvent and solute molecules
whose interaction with the colloid generates its propulsion.
A classical model is that of Active Brownian Particles (ABPs), in
which activity appears through an effective propulsion velocity of
fixed amplitude and fluctuating orientation, with a fixed persis-
tence time. There is a large body of literature on ABPs, and this
model has been particularly fruitful to analyze the role of activity in
the phase transition of assemblies of active colloids.33,34

Modeling suspensions of colloids with implicit descriptions
(i.e. where the microscopic details of the solvent and solute are
not described by explicit degrees of freedom) has been a central
question for passive colloids, and relies on hypotheses that have
been widely studied.35–37 In particular, a seminal question
concerns the evolution of effective interactions when the col-
loidal density increases.38–40

The effective potential may be unambiguously defined as the
potential of mean force (PMF) between two infinitely diluted
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colloidal particles. From a simulation perspective, the mean
force may be computed by fixing two colloidal particles in a
large enough simulation box, and averaging the force over all
solute configurations.41 One may also define a pair effective
potential at finite concentration, by directly inverting the radial
distribution function (for instance using HNC inversion methods42

or through a numerical fitting procedure, based on force fitting43

or on machine learning techniques44). Nevertheless, if the result-
ing potential depends on colloidal density, it clearly means that
many-body effects are important. Such knowledge helps under-
standing the physics of the system, but the strength of multibody
terms questions the validity of the pair additivity assumption. In
such cases, the use of effective interactions may no longer be the
best solution to define an effective model. One may rather resort to
a N-body treatment such as a DFT scheme,45 where the effective
free energy is computed as a function of the coordinates of all
colloidal particles.

For the case of active colloids, these questions are known to be
particularly challenging,46,47 and have been addressed only elu-
sively. The most common simulation techniques for active colloids
contain approximations that are not present for passive ones: the
average forces induced by the solvent are typically separated into
passive and active terms. For example, in the ABP model, the
motion of the colloids is governed by a passive component that
accounts for the effect of intercolloid conservative forces, an active
term that accounts for the colloid propulsion, and thermal noise.
A central hypothesis is that the active term is independent from
the passive ones. In other words, in the simplest models, the
activity of an individual colloid does not depend on how it
interacts with its neighbours. As a consequence, the same effective
forces as those of passive models of similar colloids may be used,
and the active term is that of an infinitely dilute active colloid.

The use of effective parameters that (i) have been deter-
mined at infinite dilution and (ii) are assumed to be indepen-
dent from one another, may be challenged by a systematic
comparison of implicit solute and explicit solute simulations.
Such comparison has been made several times for passive
colloids,40 but it has never been proposed for active colloids.
In the present work, we rely on a model of active isotropic colloid

that we recently developed.30,31 The system is driven away from
equilibrium under the effect of a chemical reaction, which con-
verts repulsive solute particles into attracting ones. Here, the
reacting solutes are described explicitly in the model. Therefore,
the activity is not part of an input parameter, but it emerges in the
system as a result of the behavior of the interacting solutes. The
chemical reactions at play are simple unimolecular conversions,
whose rate deliberately break detailed balance. In this perspective,
we can draw a parallel between the dynamics of our model, which
displays mesoscale phase separation, and that of active micro-
emulsions, which recently gained a lot of interest for the modeling
of biological condensates.48,49 In the present article, we run
Brownian dynamics simulations of this explicit solute model, with
a unique colloidal particle in the simulation box, in order to infer
the dynamical parameters of an implicit model. We then make a
systematic comparison of the properties of (i) our original explicit
solute model (Fig. 1(a)) and (ii) the implicit model (Fig. 1(b)), as a
function of the colloid density. We work in a domain of parameters
where activity is not expected to induce phase separation of the
colloids.

In the attempt to bridge scales in simple active systems, our
results show the failure of a typical coarse-graining strategy,
which has been designed for passive colloids. We show that,
even if the interaction potential used in the implicit model was
inferred from explicit solute simulations, the structure of the
suspension differs from that of the explicit model. Moreover,
the long-time diffusion of colloids strongly depends on the
colloid density in the explicit solute model, whereas this
dependence is much weaker with the ABP simulations. These
limitations in the use of pair effective potentials are clear
signatures of many-body effects, which appear to be much
stronger for active colloids than in similar passive systems.40

2 Numerical models
2.1 Explicit propulsion mechanism

We first describe the simulations where the dynamics of the
solute particles is described explicitly. In earlier related models

Fig. 1 Snapshot of the systems. (a) Simulations with an explicit propulsion mechanism: NC colloidal particles, surrounded by N solute particles (see
Section 2.1). Particles of type A (purple) interact via a purely repulsive WCA potential, whereas particles of type B (green) interact via an attractive LJ
potential. Each colloid triggers the reaction A - B, and the reaction B - A takes place away from the colloid. The density fluctuations resulting from the
mesophase separation in the vicinity of each colloid lead to their propulsion. (b) Implicit simulations, relying on the Active Brownian Particles (ABP) model.
Each particle has a propulsion velocity v0n̂i(t), whose orientation fluctuates (see Section 2.2).
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of active colloids with explicit solute particles,50–53 although
interactions within the bath were included, the presence of a
structural anisotropy of the colloidal particle reduces the role of
solute–solute interactions in the propulsion mechanism. In our
model, the solute–solute interactions are accounted for, and
their central role on the propulsion mechanism is explored.
This model will be referred to as the explicit model. More
precisely, we study a two-dimensional system where NC colloi-
dal particles of diameter sC and N solute particles of diameter
ss are placed in a square box of length cbox (Fig. 1(a)) in an
implicit solvent. We thus consider a system composed of a
solvent and of two types of immersed particles, the latter being
referred to as colloid and solutes as they differ in size. As
detailed hereafter, small immersed particles are actually of two
types A and B, so that we actually consider a quaternary system.
For both explicit and implicit simulations, the number of
colloids NC is between 10 and 100. We assume that the ratio
between the diameters of the colloids and that of the solute
particles is sC/ss = 5. The sizes of the colloid and the solute
particles are chosen to be of similar orders of magnitude for
two reasons: (i) first, we believe that it is relevant to describe the
formation of microemulsions in the intracellular media, which
are typically made of very large macromolecules whose size
is comparable to the other entities (organelles, enzymes,
proteins. . .); (ii) second, we recently showed that propulsion
could still be observed for larger ratios sC/ss = 10, although with
a larger computational cost.31

We simulate the trajectories of all particles (colloid and
solute) using Brownian dynamics simulations.54,55 The position
-
ri of each of the NC + N particles at time t + Dt is determined
from the positions at the previous step by the integrated over-
damped Langevin equation:

~riðtþ DtÞ ¼~riðtÞ �D0;i

X
iaj

~rUðrijÞDtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D0;iDt

p
~ZiðtÞ (1)

where D0,i is the diffusion coefficient of the particle i at infinite
dilution (or the ‘bare’ diffusion coefficient), ~Zi is a random
variable that follows a Gaussian distribution of mean equals to
0 and of variance equals to 1. By considering that this dynamics
holds, we actually assume that both solute and colloids are
sufficiently large to ignore inertial effects.

There are two types of solute particles in the system, named
A and B. A particles interact with each other through the purely
repulsive Weeks-Chandler-Andersen (WCA) potential56:

UWCAðrÞ ¼
4e0

ss
r

� �12
� ss

r

� �6� �
þ e0 if ro 21=6ss;

0 otherwise;

8><
>: (2)

with e0 = 10 kBT, while B particles interact through an attractive
Lennard-Jones (LJ) potential:

ULJðrÞ ¼ 4e
ss
r

� �12
� ss

r

� �6� �
: (3)

In order to improve computational efficiency, we neglect the
long-range effects that may result from the LJ interactions, and

impose a cutoff at a distance 2.5ss for the B–B interactions. The
other pair interactions in this explicit model are as follows:
A and B particles interact with each other through the WCA
potential of eqn (2), colloids also interact with each other
through this WCA potential with ss replaced by sC, and colloids
interact with solute particles of type A or B through the WCA
potential with ss replaced by (sC +ss)/2. Hydrodynamic interac-
tions between particles are not taken into account within this
numerical scheme. Although such interactions were shown to
affect the collective dynamics of self-propelled colloids and may
reduce clustering,57–59 including them within our numerical
study would be an important step forward, that we leave for
future work.

The colloidal particles catalyze the reaction A - B in their
vicinity, thus locally changing the nature of the interaction
between solute particles. The reactions occur inside spherically
symmetric reaction areas of radius rcut, centered around each
colloidal particle. Outside any reaction areas, the reaction
B - A takes place to ensure a non-equilibrium renewal of A
particles. We assume that both reactions occur very fast, in
such a way that their characteristic time is smaller than all the
other timescales of the simulation. Note that the A - B
probability conversion is proportional to the number of reac-
tion areas it belongs to. For a system with one colloid, it has
been shown that this mechanism leads to the self-propulsion of
the colloid, characterized by an enhanced diffusion coefficient.30,31

The long-time diffusion coefficient of the colloid is computed from
its mean-square displacement (MSD) as a function of time
hD-

rC
2(t)i = h(-rC(t) � -

rC(0))2i:

Deff ¼ lim
t!1

hD~rC2ðtÞi
4t

; (4)

where the average is taken over multiple noise realisations. In
every case, the MSD is computed at steady state.

In this explicit model, the propulsion mechanism has been
characterized in previous articles30,31: for suitable parameters,
the Lennard-Jones fluid demixes into a dense phase and a
dilute phase, and liquid droplets form around the colloid.
These mesoscale droplets stay confined in the reaction area
close to the colloid surface (Fig. 1(a)), and tend to push the
colloid. If the droplets orientation persists long enough, the
colloid has an intermediate ballistic trajectory, and displays
enhanced diffusion on a longer timescale.30,31 Here, we choose
parameters for which the self-propulsion is strong30,31: the
solute surface fraction is fs = 0.079, the intensity of the LJ
attraction is e = 3kBT, which is sufficient to trigger phase
separation if the local density of B particles is large enough,
and rcut = 7.5ss = 1.5sC. The surface fraction of colloids
fC = psC

2NC/(4cbox
2) varies.

2.2 Implicit model

We now describe the implicit simulation scheme, on which we
will map the explicit simulations. We rely on the ABP model,
where the dynamics of each colloid is described by the
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following dimensionless equations integrated with the Euler
scheme:

~riðtþDtÞ¼~ri tð Þþ v0n̂i tð ÞDt�Dt;C

X
iaj

~rVðrijÞDtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dt;CDt

p
~xiðtÞ;

(5)

yiðtþDtÞ¼ yiðtÞþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dr;CDt

p
x
0
i ðtÞ: (6)

n̂i(t) = (cos yi(t),sin yi(t)) is the orientation of the propulsion,
whose persistence decays exponentially with a characteristic
time 1/Dr,C, in such a way that hn̂i(0)�n̂j (t)i = e�Dr,Ctdij. Dt,C and
Dr,C are the translation and rotational diffusion coefficients,
respectively. Both xi and x0i are random variables which follow
Gaussian distributions of zero mean and of unit variance.
We use reduced units to make the equations dimensionless:
the distances are measured in units of sC, the times in units of
sC

2/Dt,C (representing the time needed by a colloid to diffuse in
a area of its diameter), and the energy in units of kBT. Finally,
the potential V(r) represents the interactions between the ABP
particles.

The implicit model [eqn (5) and (6)] therefore includes
two main ingredients: the propulsion of individual colloids
(characterized by the velocity v0 and the rotational diffusion
coefficient Dr,C) and the interactions between the colloids
(characterized by the potential V). In what follows, we deduce
these effective parameters from the simulations where the
propulsion mechanism is described explicitly (Section 2.1).

3 Effective parameters for the implicit
simulations

In this section, we calibrate the parameters of the implicit
simulations. Under the assumptions of the ABP model, the

active term v0n̂i(t) and the passive term �Dt;C

P
iaj

~rVðrijÞ of the

equations of motions [eqn (5) and (6)] are independent. There-
fore, we obtain each term in situations where the other one is
absent. First, the parameters of the active term are derived from
explicit simulations where colloid-colloid interactions are neg-
ligible. In other words, a single colloidal particle is placed in
the simulation box, with N solute particles and we run the
explicit simulations described in Section 2.1. Second, the
effective potential describing the passive term is derived from
explicit simulations without activity, i.e. when the colloid does
not catalyze the A - B reaction, with only two colloidal
particles in the simulation box so as to avoid 3- or N-body
contributions. We use Monte Carlo simulations for this
calculation.

3.1 Effective activity parameters

We first determine the parameters of the active term of the
implicit simulations, which is characterized by the magnitude
of the propulsion velocity v0 and the rotational diffusion
coefficient of this velocity, Dr,C. The exact analytical expression

of the MSD of a single ABP is60

hD~rC2ðtÞi ¼ 4Dt;Ctþ
2v0

2

Dr;C
tDr;C þ e�Dr;Ct � 1
� �

: (7)

At short times, this MSD becomes hD-
rC

2(t)iB4Dt,Ct. We thus
deduce the translational diffusion coefficient Dt,C from a linear
fit of the mean-square displacement at short time obtained by
explicit simulations.

We compute the rotational diffusion coefficient of the
colloid Dr,C from the explicit solute simulations. More precisely,
as the propulsion of the colloid is related to the orientation of
the solute cloud around it, we compute the polarity vector -

p,

defined as~p ¼
P
i2P
½~riðtÞ �~rCðtÞ�, where -

ri(t) is the position vector

of solute i, and P is the circular area around the colloid of
radius (sC + 3ss)/2. We deduce the rotational diffusion coeffi-
cient from the long-time limit of the autocorrelation function of
the polarity vector: ~pð0Þ �~pðtÞh i / e�Dr;Ct.30,31 In the situation
simulated with the explicit method (Section 2.1), we find Dr,C =
3.24 (in units of sC

2/Dt,C).
Finally, we extract v0 from a fit of the MSD obtained by

explicit simulations in the long-time limit, using the long-time

limit of eqn (7): D~rC2ðtÞ
	 


� 4Dt;C þ
2v0

2

Dr;C

� �
t. We obtain

v0= 4.49 (in units of Dt,C/sC). Fig. 2(a) shows the MSD obtained
from the explicit simulations, and the MSD given by eqn (7)
with the parameters we inferred.

Fig. 2 Top: Symbols: Mean-square displacement of a single active colloid
(NC = 1) as measured in the explicit simulations. Solid line: Mean-square
displacement given by eqn (7), with the set of parameters Dt,C, Dr,C and v0

obtained from the explicit simulations. Bottom: Radial distribution func-
tions of passive colloids in the dilute limit (fC = 0.01) measured in explicit
simulations and in the ABP simulations, for different colloid–colloid
interaction potentials.
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3.2 Effective interaction potentials

Effective interactions between the colloidal particles differ from
the direct WCA pair potential used in the explicit model, since
the smaller solute particles create depletion interactions.61 The
usual methods to obtain the interaction potential at finite
concentration, such as HNC inversion42 or reverse Monte Carlo
methods,62 are not directly applicable to non-equilibrium sys-
tems, since activity affects the structural and thermodynamical
properties of the systems. Nevertheless, if one assumes inde-
pendence between activity and effective interactions, the
effective potential V(r) may be computed from equilibrium
simulations of the explicit solute model of a passive colloidal
system. This should be done at the same solute density as the
active system, but without chemical reaction. Following a
procedure first proposed by Wu and coworkers,41 we compute
the mean force between the two colloidal particles. For a given
distance between the colloidal particles, the forces are averaged
over the configurations of the WCA solutes by using NVT Monte
Carlo simulations (between 4 � 108 and 6 � 108 steps of length
1). In these conditions, the two-body term of the N-body
effective potential between the particles is derived. The colloi-
dal particles are placed symmetrically along the diagonal of a
cubic simulation box with periodic boundary conditions. The
box size is sufficiently large to ensure that the solute distribu-
tion around both colloidal particles is not perturbed by the
periodic images. We obtain a tabulated mean force that can be
used as input effective force in standard Brownian dynamics or
in implicit simulations.

Fig. 2(b) displays the pair distribution functions between
two colloidal particles obtained at equilibrium in a dilute
system (fC = 0.01) from both explicit and implicit simulations.
We obtain a perfect agreement between explicit and implicit
solute descriptions, as expected as we use the ‘‘true’’ effective
interactions between colloids. The small peak at short distance
is due to depletion effects from the solutes. As a matter of
comparison, we also perform simulations with a simple repul-
sive WCA potential between colloids (with the size parameter sC

and an energy parameter e0 = 10kBT). Of course, the simple WCA
interaction potential cannot account for the depletion effect,
and no peak appears in the pair distribution function at this
small surface fraction.

4 Comparison of the models
4.1 Structural properties: pair distribution functions

We first check that the effective force computed from Monte
Carlo simulations accurately predicts the evolution of the
structure with the colloidal density. We display in Fig. 3 (black
and red curves) the pair distribution functions obtained for two
colloid surface fractions fC = 0.04 and fC = 0.10 from both
explicit and implicit simulations at equilibrium. There is a
remarkable agreement between both representations. It shows
that, for such systems at equilibrium, there are no signature of
N-body effects, i.e. the pair additive assumption for interactions
between colloids performs perfectly well.

We then turn towards the analysis of non-equilibrium systems
at steady state. The results are also displayed in Fig. 3. At these
moderate colloid densities, the distribution functions obtained
from explicit simulations exhibit two broad peaks. Those obtained
from implicit simulations only present a single visible peak. Such
a peak at short distance is the signature of an effective attraction
between colloidal particles. The broadness of the first peak and
the presence of a second one in the results obtained by explicit
simulations are the sign of a strong structuring of the suspension
at steady state. In all cases, the first peak is much higher than that
induced by depletion at equilibrium. However, the impact of the
non-equilibrium ingredient – the activity of ABP for the implicit
solute model, and the chemical reaction in the explicit solute
model – is significantly greater for the explicit solute simulation.
As a matter of comparison, we perform implicit simulations with
a simple WCA interaction potential between colloids instead of
the exact infinite dilution potential. We see a change of the radial
distribution function at short range, but the long-range part of the
structure is not significantly affected by the modification of the
interaction potential (see the green and orange lines in Fig. 3). The
influence of the interaction potential used in ABP simulations is
thus considerably less important than the difference between
implicit and explicit descriptions of the solutes.

This structuring of the suspension was expected as activity is
known to induce the formation of clusters, and even to cause
phase transitions for ABP models.33,34 However, we are here in
a range of densities and propulsion parameters for which the
association of active colloids stays moderate. We made a cluster
analysis from the trajectories, for both explicit and implicit
simulations. We assume that a cluster is an assembly of two or
more particles that are at distances smaller than dcutoff = 1.5sC.
The size of clusters is computed from positions at steady-state
sampled at a frequency large enough to ensure that two con-
figurations of the same system are independent. In the systems
investigated here, colloidal particles mainly tend to associate

Fig. 3 Radial distribution functions between colloidal particles for explicit
solute and implicit solute models, at equilibrium or with the influence of a
non-equilibrium reaction (active systems), for a surface fraction fC = 0.04
and fC = 0.10. Active implicit models are simulated through the Active
Brownian Particle (ABP) algorithm, either using the exact infinite dilution
effective potential, or using the same WCA potential as in explicit solute
simulations.
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into pairs, sometimes into triplets, and very rarely into larger
clusters.

The probability for a colloidal particle to be in a pair or in a
triplet is computed for both implicit and explicit models and
shown in Table 1. We show again that the effective model
perfectly predicts structural properties for equilibrium (passive)
systems, as the agreement with the explicit solute model for
both pair and triplet probabilities is excellent. However, we
confirm that the effective model strongly underestimates the
association of active colloidal particles into pairs or triplets. In
our systems, the probability to have pairs in the explicit solute
model is roughly twice larger than that of the implicit model,
for all packing fractions below fC = 0.05. The probability of
triplets is much larger in the explicit solute case, from roughly
50% higher for fC = 0.10 to more than five times higher at fC

= 0.01.
For the highest colloidal density, fC = 0.10, the difference in

the pair probabilities for implicit and explicit models is small.
The low sensitivity of the structure to the modeling of attractive
interactions is a common behavior at high densities. It can be
understood in the limit where the colloid density tends towards
that of a colloidal liquid where particles are closely packed. In
the latter case, the effective attractions are no longer influen-
cing the pair distribution functions,63 since the particles can-
not get any closer from each other. Nevertheless, the triplet
probabilities remain quantitatively different, and show that
even at this density, the explicit description of solute-induced
forces leads to more clustering.

4.2 Dynamical properties: long-time diffusion coefficients

The dynamical properties are analyzed through the computa-
tion of the mean-square displacement of the colloids (MSD) as
a function of time. The average is done over multiple noise

realisations and over all the colloidal particles. A series of
simulations for varying colloid densities shows that the long-
time diffusion coefficient progressively decreases with the
colloid surface fraction (Fig. 4). This behavior is seen with both
implicit and explicit models. In other words, self-propulsion is
less efficient in enhancing the diffusion coefficient when the
colloidal density increases. Nevertheless, the dynamical quan-
tities are significantly less affected by the colloidal density in
the implicit model than in the explicit model. It also implies
that enhanced diffusion is more important for the ABP model
than for the explicit solute model at all densities. For instance,
the decrease of the diffusion coefficient for fC = 0.10 is of 75%
for the explicit solute model and of at most 25% for the implicit
solute model. Also, it should be noted that the long-time
diffusion coefficient of ABP particles is almost not affected by
the choice of the effective interaction potential. Indeed, repla-
cing the infinite dilution effective potential by a mere WCA
potential does not affect significantly the diffusion coefficient,
as the difference is of the same order of magnitude as the
uncertainty of the calculation, which is smaller than 1%.

5 Conclusive discussion

Both structural and dynamical properties of the implicit and
explicit models show qualitative differences. In the implicit
ABP model, the influence of activity on the colloidal structure is
well known. The colloid–colloid position correlations (that can
be read in the radial distribution function) generally increase
with activity, because active particles tend to propel into
neighbouring particles. This illustrates a key coupling between
dynamics and structure in implicit solute models of active
particles: the faster the particle goes, the more likely it clusters
with other particles. This leads to an apparent contradiction
with our explicit solute model: at a given finite density, the
explicit model predicts that particles are slower than in ABP,
which is a dynamical signature of a reduced activity. Conversely,
these explicit simulations display higher structural correlations,

Table 1 Steady-state probabilities for two or three colloidal particles to
be associated into pairs or into triplets, for equilibrium (passive) systems
and active ones; for implicit (or effective) solute models and for explicit
solute models

Surface
fraction fC State

Solute
model

Pair
probability

Triplet
probability

0.01 Passive Impl. 0.028 0.000
Expl. 0.027 0.000

Active Impl. 0.042 0.002
Expl. 0.098 0.011

0.03 Passive Impl. 0.083 0.008
Expl. 0.081 0.008

Active Impl. 0.117 0.016
Expl. 0.186 0.056

0.04 Passive Impl. 0.105 0.012
Expl. 0.102 0.012

Active Impl. 0.128 0.023
Expl. 0.196 0.060

0.10 Passive Impl. 0.199 0.060
Expl. 0.195 0.061

Active Impl. 0.218 0.088
Expl. 0.223 0.114

Fig. 4 Long-time diffusion coefficient of the colloids as a function of their
surface fraction fC, computed both in the explicit model and with the
implicit ABP simulations with different interaction potentials.
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as it can be seen in the radial distribution functions, which is a
structural signature of a higher activity.

The aforementioned contradiction prevents the use of
density-dependent effective parameters to accurately map the
properties of the explicit model into an implicit one. If one
keeps the infinite dilution effective potential and infers density-
dependent activity parameters, then activity must be lowered to
fit the transport coefficients. In that case, since lowering activity
decreases clustering, the quality of structure prediction would
decrease. Therefore, a density-dependent activity would not be
a solution. If one keeps the effective activity parameters con-
stant and infers density dependent effective potentials, no
more success is expected, since we have shown that the impact
of the effective potential on transport is very small. Indeed,
when we have tried to compare the model with a true effective
potential to a mere WCA potential with no effective attraction at
all, the impact on transport was not significant. Therefore,
density-dependent effective parameters would not be sufficient
to map explicit models onto implicit ones.

This important divergence of explicit and implicit solute
simulations comes from the complex coupling between solutes
in the explicit model. When the colloid density increases, the
number of droplets per colloidal particle decreases, as shown in
the Appendix section. Actually, as it can be seen on typical
snapshots from the explicit simulations (see Appendix), dro-
plets are constrained outside of the clusters of colloids. This is
corroborated by the fact that clusters of colloids are more stable
in the explicit model than in the implicit one, as droplets keep
pushing colloids towards the center of the cluster. This non-
trivial coupling between the structure of the solute cloud and
the configuration of the colloidal particles partly explains the
failure of the implicit solute model.

Our study shows that, when solute–solute interactions
become a core ingredient of active phenomena, classical
models of active Brownian particles have to be revisited. The
use of coarse-graining strategies based on infinite dilution
effective parameters, that were designed for passive colloids
and successfully tested,41 does not work for our model of self-
propelled particles. This observation may apply to other sys-
tems close to phase transitions, as most biological systems, for
which very strong many-body effects limit the transferability of
effective parameters to finite concentrations. Despite this
apparent failure of active Brownian particle models, the com-
parison with explicit solute models unravels important aspects.
Our explicit model is much more sensitive to concentration
effects than the usual models of active matter. It means that the
properties of the colloidal particles may be highly dependent on
their environment, which opens many fundamental questions
concerning active processes in biology. Cellular media are
highly heterogeneous, and some biological macromolecules
or assemblies may be active in subparts of the cells, and passive
in other parts.

In summary, this work sheds light on the complexity of
active systems driven by interactions within the surrounding
bath. It naturally opens the way to the exploration of larger
systems and stronger activities, where enhanced diffusion itself

leads to phase separation. Then, the interplay between phase
separations occurring at both solute and colloid scales may
generate a vast variety of original dynamical and structural
behaviors. The importance of many-body effects suggests that,
for active colloids, one may look at more sophisticated coarse-
graining methodologies that have been set-up recently for
highly polarizable passive systems. For passive colloids, recent
works open the way to the use of machine learning to derive
many-body potentials,64 which may be adapted to active col-
loids in future works.
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Appendix
Size distribution of droplets in explicit solute simulations

In the explicit solute model, the Lennard-Jones interactions
drive the formation of droplets of solute particles close to
colloidal particles, where the reaction converts A particles
(WCA interaction potential) into B particles (LJ interaction
potential). The growth of these droplets is limited by the
conversion of B particles into A particles far from the colloids.
We display in Fig. 5 typical snapshots obtained from simula-
tions at the stationary state. We observe a certain size poly-
dispersity of the droplets, which are located outside clusters of
colloids when they exist. We have analyzed the size distribution
and the number of droplets for several surface fractions of
colloids. The size of the simulation box is in any case
cbox = 70ss, and the surface fraction of colloids is varied
between fC = 0.012 and fC = 0.096 by changing the number
of colloids in the simulation box. The analysis of the structure
of the system is performed at stationary state, and the results
are averaged over 75 independent trajectories.

To characterize the number and the size of droplets of solute
particles, we use a Voronoi cell analysis.65 First, the size
distribution of the Voronoi cells was computed for solute
particles. The formation of droplets of B particles leads to a
bimodal distribution of the size of the Voronoi cells for solutes,

Fig. 5 Typical snapshots of the system obtained from explicit solute
simulations at stationary state. The colors are the same as in Fig. 1. The
surface fraction of colloids is fC = 0.012 on the left, fC = 0.048 on
the right.
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that allows us to define a threshold below which a particle can
be tagged as being part of a droplet. The threshold value is
chosen equal to 2ss. The density probability of the number of
particles per droplet is displayed in Fig. 6 for several surface
fractions of colloids. This probability density presents a max-
imum that is shifted to smaller droplet sizes when the density
of colloid increases. We compute the mean size of droplets
from these probability densities, assuming that a droplet con-
sists at least in 5 solute particles and neglecting the smaller
clusters. The mean size is found almost independent of the
colloid density, and varies between 12.0 and 12.5 solute parti-
cles per droplet.

We have also computed the average number of B particles
per colloid. The results are displayed in Fig. 7 (left). This
quantity is found to decrease almost by a factor two when the
colloid density increases from fC= 0.012 to fC= 0.096. It is
larger than the mean size of droplets at low densities but

smaller than it at large densities. Also, the mean number of
droplets per colloids is found to decrease with the colloid
density whatever the threshold chosen to define a droplet.
Results are displayed in Fig. 7 (right) for several thresholds
used to define a droplet. It appears that the number of droplets
per colloids is much smaller than 1 when the colloid density
increases, especially if we assume droplets contain at least 10
particles. This proves that colloids share droplets when the
colloid density increases. There is therefore a clear coupling
between the number of colloids and the structure of the solute
cloud around each colloid.
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C. Bechinger, H.-J. Kuemmerer and C. Bechinger, Soft Matter,
2011, 7, 8810.

11 I. Buttinoni, G. Volpe, F. Kümmel, G. Volpe and
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