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Enhanced diffusion of tracer particles in nonreciprocal mixtures
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We study the diffusivity of a tagged particle in a binary mixture of Brownian particles with nonreciprocal
interactions. Numerical simulations reveal that, for a broad class of interaction potentials, nonreciprocity can
significantly increase the long-time diffusion coefficient of tracer particles and that this diffusion enhancement
is associated with a breakdown of the Einstein relation. These observations are quantified and confirmed via
two different and complementary analytical approaches: (i) a linearized stochastic density field theory, which is
particularly accurate in the limit of soft interactions, and (ii) a reduced two-body description, which is exact
at leading order in the density of particles. The latter reveals that diffusion enhancement can be attributed
to the formation of transiently propelled dimers of particles, whose cohesion and speed are controlled by the
nonreciprocal interactions.
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I. INTRODUCTION

Intracellular functions are governed by the transport of
ions, proteins, vesicles, or organelles, which are subject to
strong thermal fluctuations and which interact with each other
through crowding, electrostatics and hydrodynamics. In theo-
retical approaches, such systems are typically represented by
a suspension of interacting particles, embedded in a solvent
that causes their stochastic motion. These particles generally
evolve very far from equilibrium and are “active” in the sense
that they locally convert the chemical energy available in their
environment into mechanical work. Even though a wealth of
knowledge has been gathered on suspensions of single-species
“polar” or self-propelled active particles [1–4], the reality is
much more complex: Suspensions of biological interest are
generally strongly heterogeneous and made of particles with-
out any established polarity on the considered timescales.

Very recently, “scalar” models for active matter, where
agents are apolar but whose nonequilibrium dynamics results
in spontaneous symmetry breaking, have been developed.
For instance, one can consider catalytic molecules,. such as
proteins or enzymes, that are involved in the production or
consumption of smaller solute molecules. Each of them can
be seen as a local source or sink responding to the chemical
gradients created by the other particles. When coarse-graining
the degrees of freedom associated with solute molecules,
the effective interactions between particles appear to break
action-reaction symmetry [5–8] and should be modeled as
nonreciprocal. This line of research has recently gained a
lot of importance and now goes well beyond the interest for
active colloids, with applications ranging from the design
of new field theories [9–11] and advanced sampling tech-
niques [12] to the interpretation of active matter experiments
[13–16] and more generally phase transitions in nonequilib-

rium systems [17]. Interestingly, mixtures of particles with
nonreciprocal interactions can be mapped onto multitemper-
ature suspensions—another class of scalar active matter that
have received a lot of interest in the soft matter and biophysics
communities [18–23]. This mapping was formally established
for Newtonian dynamics [24] and can be extended to stochas-
tic overdamped dynamics (see Appendix A).

The collective and structural properties of nonreciprocal
mixtures have been studied rather extensively, revealing in
particular their tendency to phase separate [7,25,26]. How-
ever, the properties of their fluctuations, as characterized by
the dynamics of tracer particles (i.e. individually tracked,
tagged particles) have been left aside so far, in spite of their
importance. Indeed, the properties of tagged particles gener-
ally contain key information about the microstructure of the
suspension and its small-scale dynamics [27]. They are also
of importance to quantify experiments that rely on single-
particle tracking and allow accurate characterization of many
intracellular processes [28].

In this article, we study the diffusivity of a tagged particle
in a binary mixture of particles with nonreciprocal inter-
actions obeying overdamped Langevin dynamics. Brownian
dynamics simulations, together with two different analytical
treatments of the stochastic dynamics, reveal that nonreciproc-
ity can significantly increase the effective long-time diffusion
coefficient of tracer particles. We measure the nonreciprocal
contribution to its diffusivity:

Deff = Drecip + �Dnonrecip, (1)

and we show that, strikingly, this diffusion enhancement is
associated with a breakdown of the Einstein relation, which
does not hold in this nonequilibrium case. More precisely,
the effective long-time mobility can be written as μeff =
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Drecip/kBT + �μnonrecip, with the nonreciprocal correction be-
ing generally different from �Dnonrecip/kBT . We finally show
that diffusion enhancement can be attributed to the formation
of transiently propelled dimers of particles, whose cohesion
and speed are controlled by the nonreciprocal interactions.

II. MODEL

We consider a three-dimensional binary suspension of N +
1 interacting particles, made of NA (respectively, NB) particles
of species A (respectively, B), and one tracer particle (labeled
0), that can either be of type A or of type B. We denote by
ρα = Nα/V (α = A or B) the number density of each species
(excluding the tracer), where V is the volume of the system.
The overall density of bath particles is ρ = N/V , and Xα =
ρα/ρ is the fraction of α particles [29]. We assume that each
particle obeys an overdamped Langevin dynamics in such a
way that the evolution of the system is given by the set of
coupled equations:

drn

dt
= μS(n)

∑
m �=n

FS(m)→S(n)(rn − rm) +√
2DS(n)ζn(t ), (2)

where S(n) ∈ {A, B} denotes the species of particle n and
Fβ→α (r) denotes the force exerted by a particle of species
β on a particle of species α when the latter is located at
r relative to the former. The bare diffusion coefficient of a
particle of species α is related to the mobility μα through
the Einstein relation Dα = kBT μα , where T is the temperature
of the thermal bath in which the particles are embedded. For
simplicity, we will assume that all the particles have the same
mobility μ0. The noise terms ζn(t ) have zero average and are
delta correlated: 〈ζn,i(t )ζm, j (t ′)〉 = δnmδi jδ(t − t ′).

Importantly, we assume that the interactions between par-
ticles of different species can be nonreciprocal, namely that
FA→B(r) �= −FB→A(−r). In order to probe the existence of
enhanced diffusion in such a suspension, we compute the
long-time diffusion coefficient of the tracer particle, defined
as Deff = limt→∞ 〈[r0(t ) − r0(0)]2〉/6t .

For simplicity, we write the forces as deriving from
potentials (or “pseudopotentials”): Fα→β (rβ − rα ) =
−∇rβ

φα→β (|rα − rβ |). Note that we thus focus on
divergence-free force fields. With this definition, the
pseudopotentials correspond to regular pair potentials
when α = β but not otherwise. The interactions between
species can be defined through a matrix with elements
	αβ = φα→β which is split between a symmetric (reciprocal)
and antisymmetric (nonreciprocal) part:

� =
(

φrep φrep

φrep + φatt φrep

)
(3)

=
(

φA→A φR
AB

φR
AB φB→B

)
+
(

0 −φNR
AB

φNR
AB 0

)
. (4)

For concreteness, we assume that all the (α, β ) pairs interact
via a purely repulsive potential φrep(r) and that nonreciprocity
is incorporated by assuming that the pseudopotential φA→B

contains an additional attractive part φatt(r) [in the notations
of Eq. (4), this means that φR

AB = φrep + φatt/2 and φNR
AB =

φatt/2].

TABLE I. Expressions of the repulsive and attractive part of the
interaction potentials considered in the simulations.

φrep(r) φatt(r)

LJ-WCA 4ε
[(

σ

r

)12 − (
σ

r

)6]
θ (21/6σ − r) 4δ

[(
σ

r

)12 − (
σ

r

)6]
softcore εe−(r/σ )2 −δe−(r/σ )2

Yukawa ε σ

r e−r/λ −δ σ

r e−r/λ′

III. NUMERICAL EVIDENCE FOR
ENHANCED DIFFUSION

A. Main results

We first present results from Brownian dynamics sim-
ulations, which consist in integrating the set of coupled
overdamped Langevin equations [Eq. (2)] using a forward
Euler-Maruyama scheme (see Appendix B). We consider
different types of binary mixtures and the corresponding
pair potentials that represent a broad range of physical sit-
uations (for each system, the expressions of φrep and φatt

are given in Table I): (i) suspensions of hard particles
with short-range repulsion given by the Weeks-Chandler-
Andersen potential and long-range Lennard-Jones attraction
[25,26]; (ii) particles with softcore interactions, modeled
by a “Gaussian” potential, which are relevant to describe
the interactions between polymer coils [30,30–32]; and (iii)
Yukawa interactions that represent screened Coulomb inter-
actions or may arise from “chemical interactions” between
diffusiophoretic colloids [5–7,16] (the ranges λ and λ′ of
the Yukawa-like φrep and φatt are chosen such that φA→B

has an attractive part). For all these systems, the energy pa-
rameters ε and δ represent respectively the strength of the
repulsive and attractive parts of the potentials. When non-
reciprocity is very strong, the suspension may be unstable
and phase separate—this effect was for instance evidenced
in suspensions of colloids with chemically mediated [7] or
LJ-WCA [25,26] interactions. However, we emphasize that all
our simulations are performed in the homogeneous regime,
where the nonreciprocal mixture does not display any phase
separation.

In each of these systems, we measure numerically the
diffusion coefficient of tagged B particles, as summarized
in Fig. 1 . For all three sets of simulations, diffusion is
enhanced as nonreciprocity increases (a similar effect is
observed for tagged A particles, see Appendix C). In the
particular case of the softcore potentials, the relative en-
hancement can reach values as high as 20% [33]. The radial
distribution functions reveal a strong pairing between A and
B particles (Appendix C), which is interpreted as a conse-
quence of the “predator-prey” dynamics that emerges from
nonreciprocal interactions: B particles chase A particles while
A tend to run away from B, resulting in enhanced dynamics
at the scale of tagged particles—this effect will be described
in Sec. VI.

B. Additional comments

We emphasize that choosing another decomposition of the
matrix � [Eq. (4)] is not expected to affect the main results.
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FIG. 1. Long-time diffusion coefficients of B particles (rescaled by their value in the reciprocal case, δ = 0) as a function of the parameter
δ, which quantifies the intensity of nonreciprocity. Throughout the paper, energies are measured in units of kBT and distances in units of σ ,
the diameter of the particles. In all simulations, and unless otherwise specified, ρA = ρB = ρ/2. (a) Solid lines are analytical predictions in the
low-density limit (Appendix F); (b) solid lines are analytical predictions in the limit of soft interactions [Eq. (6)]; (c) dashed lines are guides
to the eye. See Table I for the expressions of the pair potentials (parameters: ε = 1, σ = 1, λ = 1, and λ′ = 1.7).

Nonreciprocity is controlled by the intensity of the pseudopo-
tential φatt (through the parameter δ), which is independent of
the decomposition into a reciprocal and a nonreciprocal part.
There are possibly other choices of the decomposition that
would surely modify the “enhancement,” if we change the ref-
erence with respect to which diffusion coefficient is measured,
but we argue that, in the present situation, the best choice to
rationalize our simulation results is to take Deff(δ = 0) as a
reference.

Finally, it is interesting to think about the relevant observ-
ables that should be used to discriminate between reciprocal
or nonreciprocal interactions in experimental measurements.
As the diffusion coefficient of a tagged particle can be larger
or smaller depending on the sign of δ, we believe that the
diffusion coefficient would probably not be a sufficient ob-
servable to identify the reciprocal case. The measurement
of diffusion coefficients could be completed by observables
that characterize the structure and spatial organization of the
system, in which the signature of the pairing mechanism can
be observed (see for instance the radial distribution functions
shown on Fig. 4).

IV. BREAKDOWN OF THE EINSTEIN RELATION

In order to probe the validity of the Einstein relation in
such mixtures, we measured the mobility of tagged particles,
aiming at comparing it to the effective diffusion coefficient de-
fined earlier. To this end, in the numerical simulations, we add
a constant external force f = f ex to the tagged particle and
measure its mobility, defined as μeff = lim f →0〈vx〉/ f , where
〈vx〉 is the average velocity attained by the tagged particle
along direction x in the stationary limit. For an equilibrium
system, the effective mobility of the tracer is expected to
be related to its effective diffusion coefficient through the
Einstein relation Deff = kBT μeff. We compare in Fig. 2 the ef-
fective diffusion coefficients and mobilities as measured from
simulations: The increasing mismatch between their values
as δ increases is a clear indication of the breakdown of the
Einstein relation in this nonequilibrium situation.

V. ANALYTICAL DESCRIPTION IN THE LIMIT
OF SOFT INTERACTIONS

In order to quantify these phenomena and to offer an-
alytical insight, we coarse-grain the dynamics and define
the density of bath particles of species α as ρ̂α (r, t ) =∑

n �=0,S(n)=α δ[rn(t ) − r], where the sum runs over all the par-
ticles of species α except the tracer (if of species α), so that
the tracer is “taken out” of the definition of the densities [34].
Using Itô calculus [35], and relying on the usual derivation
proposed by Dean for a single-component fluid [36] and later
extended to binary mixtures [37], we obtain the coupled equa-
tions for the fields ρ̂α:

∂t ρ̂α =
√

2D0∇ · [ηα

√
ρ̂α] + D0∇2ρ̂α

− μ0∇ ·
[
ρ̂α

∑
β∈{A,B}

Fβ→α ∗ ρ̂β + ρ̂αFS(0)→α ∗ δr0

]
(5)

FIG. 2. Long-time diffusion coefficients and mobilities of tagged
B particles in nonreciprocal mixtures as a function of the parameter
δ. Densities are (a) ρ = 0.10 and (b) ρ = 0.40 (see caption of Fig. 1
for the other parameters). In both panels, symbols are results from
Brownian dynamics simulations. (a) Solid lines are analytical pre-
dictions in the low-density limit (Appendix F). (b) Solid and dashed
lines are analytical predictions in the limit of soft interactions [see
Eq. (6) for DB

eff and Eq. (D50) for μB
eff].
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with the space-dependent noise ηα,i(r, t ) of average zero and
with correlations 〈ηα,i(r, t )ηβ, j (r′, t ′)〉 = δαβδi jδ(r − r′)δ(t −
t ′). In Eq. (5), the symbol ∗ represents spatial convolution:
( f ∗ g)(r) = ∫

dr′ f (r′)g(r − r′), and we use the shorthand
notation δr0 (r) = δ(r − r0). The evolution of the tracer posi-
tion is given by the overdamped Langevin equation, Eq. (2),
written for n = 0.

Although explicit, this joint description of the tracer-bath
dynamics is quite complicated, as it involves nonlinear cou-
plings and multiplicative noise. The dynamics of the fields
can be solved perturbatively by linearizing around the ho-
mogeneous state of density ρα and assuming |ρ̂α − ρα| � ρα

[34,37]. To treat the nonlinear coupling between the fields and
the position of the tracer r0(t ), we rely on a path-integral for-
mulation [38] that we recently extended to the case of a binary
mixture [39]. We finally reach an expression for the long-time
diffusion coefficient of the tracer particle as a Fourier integral:

Deff

D0
= 1 −

∑
α,β,γ
∈{A,B}

√
XαXγ

∫ ∞

0

dq

6π2
ρq2φ̃α→S(0)(q)

× [
Cαβγ

S(0)→γ φ̃S(0)→γ (q) + Cαβγ

γ→S(0)φ̃γ→S(0)(q)
]
, (6)

where the tildes represent Fourier transforms and where the
functions Cαβγ

S(0)→γ (q) and Cαβγ

γ→S(0)(q) are given in Appendix D
in terms of the densities of each species, their interaction
potentials, and their mobilities (note that, in that Appendix,
we actually consider the more general situation where the
tracer can be a different species than A or B). Additionally,
the long-time effective mobility of the tracer particle can
be computed with similar tools: Technically, this is done by
applying a small external force f to the tracer and computing
the correction to the average tracer velocity (Appendix D 3)
[34].

Equation (6) is one of the main analytical results of this
article, and several comments follow: (i) Up to a numerical
integration, the effective long-time diffusion coefficient is ob-
tained as an explicit expression in terms of all the parameters
of the problem; (ii) in our formalism, one can actually find a
more general expression of the effective long-time diffusion
coefficient, for cases in which A and B particles have dif-
ferent mobilities and are connected to different thermostats
(Appendix D); and (iii) this result should be understood
as a perturbative expansion in the limit of weak interac-
tions between the particles. Therefore, when compared to our
numerical results for the different interaction potentials con-
sidered in Table I, it is only valid for the softcore interactions:
The agreement between our analytical theory and numerical
simulations is very good [Fig. 1(b)]. Strikingly, it shows that
this linearization procedure remains true even very far from
equilibrium.

In order to discuss some consequences of Eq. (6), we con-
sider a simpler situation where the tagged particle is coupled
in a nonreciprocal way to a single bath (we will assume that
the probe is of species B and the bath particles of species
A). We take φA→A(r) = φB→A(r) = v(r) and φA→B(r) = (1 −
δ)v(r) in such a way that δ measures nonreciprocity, just
like in our numerical simulations. In this case, the effective
long-time diffusion coefficient of the tagged particle has the

simple expression:

Deff = Drecip + D0

∫
dq

(2π )3

ρδ(2 + δρṽ)ṽ2

3(1 + ρṽ)(2 + ρṽ)2
, (7)

where Drecip

D0
= 1 − ρ

3

∫ dq
(2π )3

ṽ2

(1+ρṽ)(2+ρṽ) . The effective mobil-
ity of the tracer can be computed by assuming that it is driven
by a harmonic trap with vanishing stiffness and by adapting
earlier calculations [40]. We find that the effective mobility is
given by

μeff = Drecip

kBT
+ μ0

∫
dq

(2π )3

ρδ(3 − δ + δρṽ)ṽ2

3(1 + ρṽ)(2 + ρṽ)2
, (8)

which we compare to numerical data in Fig. 2(b). Therefore,
this confirms the breakdown of the Einstein relation, which is
only retrieved in the reciprocal case δ = 0 and the trivial case
δ = 1, where the bath has no effect on the tracer.

VI. LOW-DENSITY LIMIT

We finally consider the low-density limit of the problem,
where it actually reduces to a two-particle situation: one of
them is the tagged particle, and the other one is a bath particle.
To ease the notation, we will assume that the tracer, at position
r0, is of species α, and the considered bath particle, at position
rb, is of species β. The pair correlation of the tracer with
the bath particle is obtained by solving the Smoluchovski
equation for the two-body probability density Pαβ (r0, rb, t ).
Using the variables r = rb − r0 and R = (r0 + rb)/2, it reads

∂t Pαβ = 2D0∇2
r Pαβ + μ0∇r · [Pαβ∇r(φα→β + φβ→α )]

+ D0

2
∇2

RPαβ + μ0

2
∇RPαβ · ∇r(φβ→α − φα→β ). (9)

Integrating over the position of the center of mass R, and
defining uαβ (r) = [φα→β (r) + φβ→α (r)]/2kBT , we find the
stationary solution of Eq. (9): g0

αβ (r) = exp[−uαβ (r)]. In-
terestingly, this is analogous to the simple equilibrium pair
distribution in the low-density limit, but with the interaction
potential taken as the average between the two nonreciprocal
pseudopotentials. The long-time diffusion coefficient of the
tracer, as well as its effective mobility, can be computed using
standard methods [41,42], and the comparison between these
two observables shows that the Einstein relation does not hold
in this limit either (see Appendix F). Although the potentials
used in this study do not allow the derivation of explicit ex-
pressions for the long-time diffusion coefficient and mobility
in this limit, we can evaluate through the numerical resolution
of ordinary differential equations. For LJ/WCA potentials, the
results are shown on Fig. 1(a), Fig. 2(a), and Fig. 3(a).

This low-density approach also reveals that, if the effective
potential uαβ (r) has a deep enough minimum, then an αβ

pair may form a “transient dimer” that remains bound for
some time. Indeed, the dynamics of their center of mass R
can be read from the effective equation of motion Ṙ(t ) =
μ0

2 ∇(φα→β − φβ→α ) + √
D0ξ(t ), where ξ(t ) is a Gaussian

white noise with unit variance. If the interaction is nonrecip-
rocal, then the first term on the right-hand side is nonzero and
represents a self-propulsion term, which depends solely on
the inner variable r(t ). The characteristics of self-propulsion
depend on the shape of the potentials: (i) If the minimum

054606-4



ENHANCED DIFFUSION OF TRACER PARTICLES IN … PHYSICAL REVIEW E 108, 054606 (2023)

FIG. 3. Long-time diffusion coefficients of tagged A particles in
nonreciprocal mixtures (rescaled by their value in the reciprocal case,
δ = 0) as a function of the parameter δ, which quantifies the intensity
of nonreciprocity. Throughout the paper, energies are measured in
units of kBT and distances in units of σ , the diameter of the particles.
In all simulations, ρA = ρB = ρ/2. (a) Solid lines are analytical
predictions in the low-density limit (Appendix F 3); (b) solid lines
are analytical predictions in the limit of soft interactions [Eq. (6)];
(c) dashed lines are guides to the eye. See Table I for the expressions
of the pair potentials (parameters: ε = 1, σ = 1, λ = 1, λ′ = 1.7).

of uαβ (r) is at r = 0 and the potentials behave as φαβ (r) ∼
kαβr2/2 around r = 0, then the dynamics of r(t ) is linear, r(t )
is an Ornstein-Uhlenbeck process, and the coordinate R(t )
therefore behaves as an active Ornstein-Uhlenbeck particle
[43]; (ii) on the contrary, if the minimum of uαβ (r) is at
r∗ > 0, then the modulus of interparticle vector remains con-
fined close to r∗, and one can define a self-propulsion velocity
V0 � D0

2 [φ′
αβ (r∗) − φ′

βα (r∗)]: The coordinate R(t ) behaves as
an active Brownian particle [44], with a rotational diffusion
coefficient Dr � 2D0/r∗2.

In our numerical simulations, when the overall density ρ

is small enough, we observe that DA
eff � DB

eff , even for strong
nonreciprocity (Appendix C). In contrast, at higher densities,
these two values differ more clearly. This supports the idea
that, at low density, diffusion enchancement can be related to
the pairing between A and B particles. This effect is remi-
niscent of the self-propelled dimers observed in very dilute
suspensions of chemotactic colloids [5,13,15,16]. This rela-
tionship between the nonreciprocal mixture and suspensions
of active particles (Brownian or Ornstein-Uhlenbeck) could
be used to define an “active temperature” and a generalized
Einstein relation [45].

VII. DISCUSSION

In this article, we showed that nonreciprocal interactions
between Brownian particles could significantly enhance their
diffusivity. Nonreciprocity, which plays a predominant role
in the interaction between chemically active particles, is thus
expected to have a significant impact on the efficiency of
molecular transport and on the kinetics of diffusion-limited
reactions. These observations, together with the mapping be-
tween nonreciprocal and two-temperature mixtures, open the
way to the interpretation of the rich phenomenology of non-
reciprocal and multitemperature mixtures and to the local
structures that emerge from the local energy transfers at the
microscopic scale [46]. In the biological context, we believe

that these concepts could find their applications in elucidating
the role played by ATP-fueled activity in the fluidization of the
intracellular medium and of its rheological properties [47].

The input files and raw data used for the figures are avail-
able on Zenodo in Ref. [48].
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APPENDIX A: MAPPING FROM MULTITEMPERATURE
SUSPENSIONS TO NONRECIPROCAL MIXTURES

The mapping from multitemperature suspensions to non-
reciprocal mixtures was demonstrated for a binary, under-
damped suspension in Ref. [24]. We extend here these argu-
ments for an arbitrary number of species in the overdamped
limit. We write the generic Smoluchowski equation for a sus-
pension of N particles connected to N different thermostats:

∂tP (rN ; t ) =
N∑

n=1

{
kBTnμn∇2

rn
P (rN ; t )

− μn∇rn

[
P (rN ; t )

∑
m �=n

F(rn − rm)

]}
, (A1)

where μn is the mobility of particle n, Tn its temperature,
F is a reciprocal force field (reciprocal in the sense that it
depends only on the distance between the particles, and not
on their species), and P (rN ; t ) is the N-body probability dis-
tribution [we use the shorthand notation: rN = (r1, . . . , rN )].
It is straightforward to show that this equation also describes
the dynamics of a suspension of N particles connected to
a single thermostat T but with mobilities μ′

n = (Tn/T )μn,
and interacting via “nonreciprocal forces” Fm→n(rn − rm) =
(T/Tn)F(rn − rm) (here Fm→n denotes the force exterted by
particle m on particle n). Therefore, a mixture of overdamped
particles with multiple temperatures can be mapped onto a
mixture with nonreciprocal forces, but we underline that the
converse is not always true. This gives additional justification
for the study of nonreciprocal mixtures, that appears to be
more general and that they can give insight into the physics
of multitemperature systems.

APPENDIX B: NUMERICAL METHODS

To perform Brownian dynamics simulations we have used
the LAMMPS computational package [49–51]. We used the
command ‘fix brownian’ that allows one to integrate over-
damped Langevin equations for the positions of particles
thanks to a forward Euler-Maruyama scheme. To allow the
forces between A and B particles to be nonreciprocal, we
have used Pylammps, the wrapper python class for LAMMPS.
More precisely, we have added in the simulation box a number
of “ghost” particles (named C in what follows) equal to that of
A particles. The interaction potential between A and B is the
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interaction potential φrep(r), and C and B particles undergo
the attractive interaction potential φatt (r) (see Table I). At
each time step of the simulation, ghost particles C are put
at the exact same positions as particles A, so that they exert
an additional attractive force on particles B as if they were
A particles. This additional force does not influence particles
A: As a result, the total force between A and B particles are
nonreciprocal. To compute interaction forces, cutoff distances
equal to 2.5σ , 2.5σ , and 5σ are used for the Lennard-Jones,
softcore and Yukawa interaction potentials, respectively. The
input mobility of particles is the same for A and B particles.

In every case, a total number of NA = 2000, NB =
2000, NC = 2000 particles are placed in a cubic simulation
box with periodic boundary conditions. The length of the box
Lbox is varied to change the total density ρ = (NA + NB)/L3

box
of the system. The time step varies between �t = 0.0002t�

and �t = 0.002t�, depending on the interaction potential and
of the density of the system, with t� = σ 2/(kBT μ0) = σ 2/D0

the time needed for a particle to diffuse over a length equal
to its size. In each case, we begin by one long trajectory of
107 time steps to equilibrate the system at δ = 0 (recipro-
cal case). For each value of δ, starting from a configuration
representative of the equilibrium situation (δ = 0), one long
trajectory of about 107 time steps is run to reach a stationary
state, characterized by constant radial distribution functions.
Then, mean-squared displacements of tracers are averaged
over three to nine independent trajectories of about 107 time
steps (depending on the time step and density), and over par-
ticles and time. The mean-squared displacements were found
to be linear at all times for every system investigated here.
The uncertainty of the computed self-diffusion coefficients
was evaluated from the standard deviation of values obtained
from different trajectories. The uncertainty on Deff/D0 was in
each case smaller than 0.005. Note that the size of the symbols
used in the figures is larger than these error bars.

Finally, to compute the mobility, we have added a force on
50 tracer B particles chosen at random. The amplitude of the
force is chosen to ensure that we stay in the linear regime,
i.e. the displacement with time is proportional to the force.
Starting from equilibrated configurations obtained at each δ,
we have run simulations of about 2 × 106 time steps with the
added force. The mobility is computed from 〈[r(t ) − r(t =
0)]/t〉, averaging over the last 20% steps of three independent
trajectories, and over the 50 tracer particles.

APPENDIX C: ADDITIONAL RESULTS FROM BROWNIAN
DYNAMICS SIMULATIONS

In this section, we present additional numerical results.
(i) We show in Fig. 3 the effective diffusion coefficient of

A particles. This is the counterpart of Fig. 1, which showed
the effective diffusion coefficient of B particles.

(ii) We show in Fig. 4 the radial distribution functions
for the different pairs of species in the binary mixtures (AA,
BB, AB), and for the different interaction potentials used
in the Brownian dynamics simulations (WCA-LJ, softcore,
Yukawa). The strong pairing between A and B particles is
visible on the functions gAB(r), which are much larger than
1 when nonreciprocity is strong.

FIG. 4. Radial distribution functions for the different pairs of
species in the binary mixtures (AA, BB, AB), and for the different
interaction potentials used in the Brownian dynamics simulations
(WCA-LJ: ρ = 0.1, δ = 3, softcore: ρ = 0.3, δ = 5, Yukawa: ρ =
0.3, δ = 0.9). The curves for grecip(r) correspond to the AA radial
distribution functions in the reciprocal case (the BB and AB radial
distribution functions are identical within statistical noise, as ex-
pected in this situation).

(iii) We show in Fig. 5 the relative difference between the
diffusion coefficients of A and B particles. More precisely, we
define the diffusion coefficients rescaled by their reciprocal
value: D̄α

eff = Dα
eff/Dα

recip, and we define the relative difference

between D̄A
eff and D̄B

eff as: (D̄B
eff − D̄A

eff )/ 1
2 (D̄A

eff + D̄B
eff ). This

quantity is plotted for the three sets of numerical simulations
(LJ-WCA, softcore, Yukawa).

APPENDIX D: LIMIT OF SOFT INTERACTIONS

In the main text, for simplicity, we considered the situation
where all the particles have the same mobilities, the same
diffusion coefficients, and are connected to the same thermo-
stat. We also assumed that the tracer was either a particle of
species A, or a particle of species B. In this supplementary
calculation, we consider the more general situation where the
tracer, denoted by the index 0, can be a different species than
A or B. There are a priori three different thermostats (T0,
TA, and TB), three different mobilities (μ0, μA, and μB). The
bare diffusion coefficients are related to temperatures and mo-
bilities through the fluctuation-dissipation relation, which is
assumed to hold in the limit of infinite dilution: Dα = kBTαμα .
To ease the notation, we will denote by “0” the species of the

FIG. 5. Relative difference between the effective diffusion co-
efficient of A and B particles, for the different set of numerical
simulations we performed. We show this relative difference as a
function of ρ, for different values of the nonreciprocity parameter
δ.
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tracer (which is different from A and B in the most general
situation). Finally, although the results presented in the main

text applied to a three-dimensional systems, we provide here
a derivation that holds in any spatial dimension d .

1. Linearized Dean equation

We start from Eq. (5). We linearize the density fields ρ̂α around the homogeneous value ρα , by writing ρ̂α = ρα + √
ραψα

and assuming ψα � √
ρα . We find, at leading order in ψi:

∂tψA =
√

2DA∇ · ηA + DA∇2ψA − ρμA{∇ · (XFA→A ∗ ψA) + ∇ · [
√

X (1 − X )FB→A ∗ ψB] +
√

ρA

ρ
∇ · (F0→A ∗ δr0 )}, (D1)

and the counterpart for ψB. For simplicity, we denoted XA = X and XB = 1 − X . In Fourier space, the coupled equations for
ψ̃A(q, t ) and ψ̃B(q, t ) then read

∂t

[
ψ̃A(q, t )

ψ̃B(q, t )

]
= −m

[
ψ̃A(q, t )

ψ̃B(q, t )

]
+
(√

2DAiq · η̃A√
2DBiq · η̃B

)
− ρ

⎡⎣ √
X
ρ

e−iq·r0(t )μAiq · F̃0→A√
1−X

ρ
e−iq·r0(t )μBiq · F̃0→B

⎤⎦, (D2)

with

m =
[

q2kBTAμA + ρμAX iq · F̃A→A

ρμB
√

X (1 − X )iq · F̃A→B

ρμA
√

X (1 − X )iq · F̃B→A

q2kBTBμB + ρμB(1 − X )iq · F̃B→B

]
. (D3)

We apply the same procedure to the equation for the position of the tracer, which reads

d

dt
r0(t ) = ρμ0

√
X

ρ
(FA→0 ∗ ψA)(r0(t ), t ) + ρμ0

√
1 − X

ρ
(FB→0 ∗ ψB)(r0(t ), t ) +

√
2D0ξ(t ). (D4)

In order to treat the coupling between the dynamics of
the fields and that of the position of the tracer, we rely on
a path-integral formulation that was initially proposed in the
situation where the tracer is coupled to a single fluctuating
field [38] and later extended to the situation where the tracer
is coupled to multiple fields [39]. In Sec. D 2, we present a
general formalism that applies to a tracer particle coupled in a
nonreciprocal way to two fluctuating fields, which themselves
interact nonreciprocally. In Sec. D 4, we show how the for-
malism can be applied to the case where the fluctuating fields
represent the stochastic density fields of A and B particles.

2. General formalism

a. Dynamics of the tracer and of the fields

We consider a tracer, whose position at time t is denoted by
r0(t ) and which diffuses while being coupled to two fluctuat-
ing fields ψA(x, t ) and ψB(x, t ) (Fig. 6). We assume that the
interactions between the two fields can be nonreciprocal and
also that the tracer-field interactions can be nonreciprocal. The
position of tracer r0(t ) obeys the following evolution equation:

d

dt
r0(t ) = μ0

∑
α=A,B

∇Kαψα[r0(t )] +
√

2D0η(t ), (D5)

where μ0 is the mobility of the tracer, hα is the coupling
constant between the tracer and the field α, and Kα is a linear
operator. Throughout the calculation we use the following
shorthand notations for convolutions between operators and
fields:

AV (x) =
∫

dx′ A(x − x′)V (x), (D6)

ABV (x) =
∫

dx′
∫

dx′′ A(x − x′)B(x′ − x′′)V (x′′). (D7)

The noise term η(t ) has average zero and unit variance:
〈ηi(t )η j (s)〉 = δi jδ(t − s).

Dynamics of the fields. We then assume that the fields ψA

and ψB obey the following dynamics:

∂tψA(x, t ) = −RA[�AAψA + �ABψB]

+ RAK ′
A[x − r0(t )] +

√
2DAξA(x, t ), (D8)

∂tψB(r, t ) = −RB[�BAψA + �BBψB]

+ RBK ′
B[x − r0(t )] +

√
2DBξB(x, t ), (D9)

where μα is the mobility of the field α, Rα is an opera-
tor used to specify if the dynamics is conservative or not

FIG. 6. A diffusing tracer is coupled to two fluctuating fields,
whose interactions may be nonreciprocal. The tracer-field interac-
tions may also be nonreciprocal.
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(in Fourier space, R̃α (q) = 1 corresponds to a nonconserved
“model A” dynamics, whereas R̃α (q) = q2 corresponds to a
conserved “model B” dynamics [52]). Note that, for nonre-
ciprocal interactions, Kα �= K ′

α . The noise terms are such that
〈ξα (x, t )ξβ (x′, s)〉 = δαβRα (x − x′)δ(t − s).

The first term in the right-hand side of Eqs. (D8) and
(D9) describes the interactions between the fields, whereas
the second term describes the effect of the probe on the evo-
lution of the fields. Note that, as opposed to the calculation
proposed in Ref. [38], we do not assume that the dynamics
of the system can be written as deriving from a Hamiltonian
H[r0(t ), ψA, ψB]. Indeed, this choice of dynamics would yield
reciprocal interactions between fields A and B by construc-
tion.

We then follow the lines of the calculation presented in
Ref. [39], and we recall all the steps for completeness. The
main difference is that the tracer-bath coupling are represented
differently in Eq. (D5) and in Eqs. (D8) and (D9): The recip-
rocal case would be recovered in the particular case K ′

A = KA

and K ′
B = KB.

b. Generalized Langevin equation for the tracer

The next step of the calculation consists in deriving a
generalized Langevin equation obeyed by the position of the
tracer. To this end, we first solve for the dynamics of the fields
ψα (r, t ). We start from Eq. (D8) and (D9). The equations for
ψA and ψB read, in Fourier space:

d

dt

[
ψ̃A(q, t )

ψ̃B(q, t )

]

= −m

(
ψ̃A

ψ̃B

)
+
[

e−iq·r0(t )R̃AK̃ ′
A + √

2DAξ̃A

e−iq·r0(t )R̃BK̃ ′
B + √

2DBξ̃B

]
, (D10)

where the dependencies over q are not written explicitly for
clarity and where we define the matrix m as

m =
(

R̃A�̃AA R̃A�̃BA

R̃B�̃AB R̃B�̃BB

)
. (D11)

Equation (D10) is a simple set of coupled linear first-order
differential equations, whose resolution requires the matrix
exponential M̃ ≡ exp[−(t − s)m], which is written under the
form

Mαβ = c(+)
αβ e−(t−s)λ+ + c(−)

αβ e−(t−s)λ− , (D12)

where we defined the matrices

c(±) = 1

2s

(
±mAA ∓ mBB + s ±2mAB

±2mBA ∓mAA ± mBB + s

)
, (D13)

the eigenvalues

λ± = mAA + mBB

2
± 1

2

√
(mAA − mBB)2 + 4mABmBA, (D14)

and the quantity

s =
√

(mAA − mBB)2 + 4mABmBA. (D15)

After Fourier inversion, one finds the solution of Eq. (D8) in
real space under the form

ψα (x, t ) =
∫ t

−∞
ds
∑

β

{Mαβ (t − s)RβK ′
β[x − r0(s)]

+√
2DβMαβ (t − s)ξα (x, s)}, (D16)

where Mαβ are the elements of the inverse Fourier transform
of M̃.

Starting from Eq. (D5) and using the expression for the
field derived previously [Eq. (D16)], the equation for the
dynamics of the tracer can be rewritten as

d

dt
r0(t ) =

√
2D0η(t ) +

∫ t

−∞
ds F[r0(t ) − r0(s), t − s]

+ �[x0(t ), t], (D17)

with

F(r, t ) = μ0

∑
α,β

∇KαMαβ (t )RβK ′
β (r), (D18)

and

�[r, t] = μ0

∑
α,β

√
2Dβ∇Kα

∫ t

−∞
ds Mαβ (t − s)ξβ (r, s)

(D19)

Therefore, the dynamics of the tracer [Eq. (D17)] is formally
written as a generalized Langevin equation.

c. Path-integral representation

Starting from Eq. (D17), we now aim at calculating the
mean-square displacement of the tracer at a given time t f , de-
fined as 〈[r0(t f ) − r0(0)]2〉, and the self-diffusion coefficient,
defined as

Deff = lim
t f →∞

〈[r0(t f ) − r0(0)]2〉
2dt f

(D20)

To this end, we follow the lines of Ref. [38], in which a
perturbative path-integral study was outlined. Introducing a
variable p conjugated to the position of the tracer, the par-
tition function associated to Eq. (D17) can be written under
the form Z = ∫

DxDp e−S[x,p], where the action S[x, p] =
S0[x, p] + Sint[x, p] has the following contributions:

S0[x, p] = −i
∫

dt pi(t )ẋi(t ) + D0

∫
dt pi(t )pi(t ), (D21)

Sint[x, p] = i
∫

dt ds pi(t )Fi[r0(t ) − r0(s), t − s]θ (t − s)

+
∫

dt ds pi(t )Gi j[r0(t ) − r0(s), t − s]p j (t )

× θ (t − s). (D22)

We used the Einstein summation convention and where θ

denotes the Heaviside function. The matrix elements Gi j are
defined as Gi j (x − x′, t − t ′) ≡ 〈�i(x, t )� j (x′, t ′)〉 and read,
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in Fourier space:

G̃i j (q, t ) = 2μ2
0qiq j

∑
α,β,γ

K̃αK̃γ kBTβ R̃β

×
∑

ν,ε=±1

c(ν)
αβ c(ε)

γ β

e−λν |t |

λν + λε

, (D23)

where the sums over α, β, and γ run over all the constituents
of the mixture and where we use the expression of the matrix
exponential Mαβ given in Eq. (D12). Similarly, the Fourier
transform of the components of F, defined in Eq. (D18), read

F̃i(q, t ) = iμ0q
∑
αβ

K̃αM̃αβ (t )R̃βK̃ ′
β. (D24)

At equilibrium, when K̃α = K ′
α , Tα = T , and �αβ = �βα , one

can check that the functions F and G satisfy the relation
∇iFj (x, t ) = ∂t Gi j (x, t ) for t > 0 [53].

Expanding in the limit where the tracer-bath interactions
are small (i.e. when the interaction action Sint is small com-
pared to S0) and at first nontrivial order, one gets the following
expression for the mean-square displacement of the tracer:

〈[r0(t f ) − r0(0)]2〉 � 〈[r0(t f ) − r0(0)]2〉0 − IF − IG, (D25)

where the average 〈. . . 〉0 is taken over the bare action S0 and
where we defined

IF =
〈

ir0(t f )2
∫

dt
∫

ds θ (t − s)pi(t )

× Fi[r0(t ) − r0(s), t − s]

〉
0

(D26)

�
t f →∞ 4D0

∫
dd q

(2π )d
q2μ0

∑
α,β

K̃α (q)K̃ ′
β (q)R̃β (q)

×
∑
ν=±1

c(ν)
αβ

(D0q2 + λν )2
t f , (D27)

and

IG =
〈

r0(t f )2
∫

dt
∫

ds θ (t − s)pi(t )

× Gi j[r0(t ) − r0(s), t − s]p j (s)

〉
0

(D28)

�
t f →∞ 4

∫
dd q

(2π )d
q2μ2

0

∑
α,β,γ

K̃α (q)K̃γ (q)R̃β (q)kBTβ

×
∑

ν,ε=±1

c(ν)
α,βc(ε)

γ ,β

λν + λε

· D0q2 − λν

(D0q2 + λν )2
t f . (D29)

Then, using the definition of the effective diffusion coef-
ficient and integrating over all Fourier modes, we write the
effective diffusion coefficient under the form Deff = D0 −

∑
α,β D̄αβ with

D̄αβ = μ0

d

∫
dd q

(2π )d
q2K̃α (q)R̃β (q)

×
∑

γ

∑
ν=±1

c(ν)
αβ

(D0q2 + λν )2

[
2D0δγβK̃ ′

γ (q)

+ D0

(
c(ν)
γ β

λν

+ 2c(−ν)
γ β

λ+ + λ−

)
(D0q2 − λν )K̃γ (q)

]
.

(D30)

3. Correction to the mobility

Here we adapt the calculation above to the correction to the
mobility, following Ref. [34]. We apply a small external force
f and compute the correction to the average tracer position,
〈r0(t f ) − r0(0)〉. The bare action is now given by

S0[x, p] = − i
∫

dt pi(t )[ṙ0,i(t ) − μ0 f ]

+ D0

∫
dt pi(t )pi(t ), (D31)

The average displacement of the tracer is

〈r0(t f ) − r0(0)〉 = μ0 f t f − I ′
F − I ′

G, (D32)

where the following averages are computed with Ref. [34]
[Eqs. (72) and (73)]:

I ′
F =

〈
ir0(t f )

∫
dt
∫

ds θ (t − s)pi(t )

× Fi[r0(t ) − r0(s), t − s]

〉
0

(D33)

= −iμ0t f

∫
dd q

(2π )d

∑
α,β

∑
ν=±1

qK̃αK̃ ′
β R̃βc(ν)

αβ

λν + D0q2 − iμ0q · f
,

(D34)

and

I ′
G =

〈
r0(t f )

∫
dt
∫

ds θ (t − s)pi(t )

× Gi j[r0(t ) − r0(s), t − s]p j (s)

〉
0

(D35)

= −2iμ2
0t f

∫
dd q

(2π )d

∑
α,β,γ

∑
ν,ε=±1

q q2K̃αK̃γ kBTβ R̃β

× c(ν)
αβ c(ε)

γ β

(λν + λε )(λν + D0q2 − iμ0q · f )
. (D36)
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To obtain the effective mobility, we take the limit f → 0
and consider the velocity in the direction of the force, leading
to

μeff = μ0 − μ2
0

d

∫
dd q

(2π )d

∑
α,β

∑
ν=±1

q2K̃αK̃ ′
β R̃βc(ν)

αβ

(λν + D0q2)2

− 2μ3
0

d

∫
dd q

(2π )d

∑
α,β,γ

∑
ν,ε=±1

q4K̃αK̃γ kBTβ R̃βc(ν)
αβ c(ε)

γ β

(λν + λε )(λν + D0q2)2

(D37)

= μ0 − μ2
0

d

∫
dd q

(2π )d

∑
α,β

∑
ν=±1

q2K̃αR̃βc(ν)
αβ

(λν + D0q2)2

×
⎡⎣K̃ ′

β + 2μ0kBTβq2
∑

γ

∑
ε=±1

K̃γ c(ε)
γ β

λν + λε

⎤⎦. (D38)

4. Mapping with the situation considered in the main text

The equations of the main text, which were derived in
the specific situations where the fields ψA and ψB describe
the perturbation around homogeneous densities of of in-

teracting Brownian particles, are mapped onto the general
equations [Eqs. (D5) and (D10)] using the following expres-
sions for the operators Rα , �αβ , Kα , and K ′

α:

R̃α (q) = μαq2 (D39)⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�̃AA = kBTAq2 + ρXiq · F̃A→A

�̃BB = kBTBq2 + ρ(1 − X )iq · F̃B→B

�̃AB = ρ
√

X (1 − X )iq · F̃B→A

�̃BA = ρ
√

X (1 − X )iq · F̃A→B

(D40)

⎧⎨⎩K̃A = −
√

ρX
q2 iq · F̃A→0

K̃B = −
√

ρ(1−X )
q2 iq · F̃B→0

(D41)

�=
⎧⎨⎩K̃ ′

A = −
√

ρX
q2 iq · F̃0→A

K̃ ′
B = −

√
ρ(1−X )

q2 iq · F̃0→B

. (D42)

5. Expression of the long-time diffusion coefficient and mobility

Using the mapping from Eqs. (D39)–(D42), we get the
following expression of the effective diffusion coefficient of
the tracer particle:

Deff

D0
= 1 −

∑
α,β,γ

μ0μβ

∫ ∞

0

dq

6π2
q2ρ

√
XαXγ iq · F̃α→0

×
∑
ν=±1

2c(ν)
αβ

(D0q2 + λν )2

[
δγβ iq · F̃0→γ + Tβ

T0
(D0q2 − λν )

∑
ε=±1

c(ε)
γ β

λν + λε

iq · F̃γ→0

]
, (D43)

where λ±1 denote the eigenvalues of m and where the coefficients c(±1)
αβ are the elements of the matrices

c(±) = 1

2s

(
±mAA ∓ mBB + s ±2mAB

±2mBA ∓mAA ± mBB + s

)
, (D44)

with

s ≡{[(q2kBTAμA + ρμAX iq · FA→A) − (q2kBTBμB + ρμB(1 − X )iq · FB→B)]2

+ 4ρ2μAμBX (1 − X )(iq · FA→B)(iq · FB→A)}1/2. (D45)

The expression given of Deff/D0 in the main text [Eq. (6)] is obtained by considering the simple case where all the particles
have the same mobilities, the same diffusion coefficients, and are connected to the same thermostat. We also consider the
particular case where the forces derive from pseudopotentials, i.e., in Fourier space:

Fα→β (q) = −iqφ̃α→β (q). (D46)

This yields the expression from the main text:

Deff

D0
= 1 −

∑
α,β,γ

∈{A,B}

∫
dq

6π2
ρq2φ̃α→0(q)

∑
γ

√
XαXγ

[
Cαβγ

0→γ φ̃α→0(q) + Cαβγ

γ→0φ̃γ→0(q)
]
, (D47)

with

Cαβγ

0→γ = δγβ

∑
ν=±1

2c(ν)
αβ

(1 + λ̄ν )2
, (D48)

Cαβγ

γ→0 =
∑

ν,ε=±1

2c(ν)
αβ c(ε)

γ β

(1 + λ̄ν )2(λ̄ν + λ̄ε )
(1 − λ̄ν ), (D49)

where we defined λ̄ν = λν/(D0q2).
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Similary, using the mapping and the expression of the mobility [Eq. (D38)], we get

μeff

D0
= 1 −

∑
α,β,γ

μ0

∫ ∞

0

dq

6π2
q2ρ

√
XαXγ iq · F̃α→0

∑
ν=±1

c(ν)
αβ

(D0q2 + λν )2

[
δγβ iq · F̃0→γ + 2μ0kBTβq2

∑
ε=±1

c(ε)
γ β

λν + λε

iq · F̃γ→0

]
.

(D50)

APPENDIX E: EFFECTIVE MOBILITY OF A PROBE
COUPLED NONRECIPROCALLY TO A SINGLE BATH

In this section, we explain the derivation of the effective
mobility of a probe coupled nonreciprocally to a single bath
[see Eq. (8) in the main text]. We rely on the derivation
presented in Ref. [40], in which the mean displacement of
a probe linearly coupled to a generic fluctuating field, and
submitted to a driven harmonic confinement, is computed. In
Eq. (A.3) from this reference, the terms in brackets in the
integrand has two contributions: The first one originates from
memory effects and should be proportional to the effect of
the bath on the tracer times that of the tracer on the bath; the
second one originates from the noise of the bath and should
be proportional to the square of the effect of the bath on the
tracer.

Denoting by (1 − δ) the effect of the bath on the tracer,
as in the main text, and taking the limit of a harmonic trap
of vanishing stiffness and vanishing velocity, we find from
Eq. (A.3) in Ref. [40]:

μeff = μ0 − 1

3

∫
dq

(2π )3

q2K̃2

Ã

(1 − δ)[(1 − δ)D0q2 + R̃Ã]

(D0q2 + R̃Ã)2
,

(E1)

Using the following mapping between the notations of
Ref. [40] and our notations: K̃2 = ρṽ2, Ã = 1 + ρṽ, R̃ =
μ0q2, we find the result given in the main text. This expression
can also be obtained as a consequence of the more general
expression of the long-time mobility [Eq. (D38)].

APPENDIX F: LOW-DENSITY LIMIT

1. Friction

In order to measure the friction of the tracer particle in the
low-density limit, we assume that it is submitted to a small
external force, along the lines of Ref. [41]. Applying a force
F on the probe disturbs the pair distribution function gαβ (r),
which is now a solution of

0 = 2D0∇ · [e−uαβ ∇(euαβ gαβ )] + μ0F · ∇gαβ, (F1)

where we recall the definition of uαβ given in the main text:
uαβ (r) = [φα→β (r) + φβ→α (r)]/2kBT . We use the ansatz

gαβ (r) = g0
αβ (r)[1 + q(r)F · r̂], (F2)

where g0
αβ (r) is the pair distribution function in the absence

of external force. In the limit of small force, the first order in
F = F F̂ reads

0 = 2D0∇ · [e−uαβ (r)∇(q(r)F̂ · r̂)] + μ0F̂ · ∇e−uαβ (r). (F3)

Writing explicitly the derivative and using D0 = kBT μ0, we
get

2∇ · [e−uαβ (r)∇(q(r)F̂ · r̂)] = 1

kBT
F̂ · r̂u′

αβ (r)e−uαβ (r). (F4)

The friction created by the bath particles is

Fb =
∑

β

ρβ

∫
gαβ (r)∇φβ→α (r)dr. (F5)

Using the ansatz (F2) leads to

Fb =
∑

β

ρβ

∫
e−uαβ (r)q(r)(F · r̂)r̂φ′

β→α (r)dr (F6)

=
∑

β

ρβ

3
F
∫

e−uαβ (r)q(r)φ′
β→α (r)dr. (F7)

The relative change in mobility is thus

μeff − μ0

μ0
=
∑

β

ρβ

3

∫
e−uαβ (r)q(r)φ′

β→α (r)dr. (F8)

2. Long-time diffusion coefficient

From Eq. (S21) in Ref. [42], the correction to the long-time
diffusion coefficient of the probe is given by

�D = − lim
s→0

lim
k→0

〈e−iq·r1LN (s − LN )−1LN eiq·r1〉ss. (F9)

The average is defined by 〈 f 〉ss = ∫
f (X )PN (X )dX , where X

is the vector containing the coordinates of all the particles and
PN (X ) is the steady-state probability density: LN PN = 0. The
Liouville operator is given by

LN f (X ) =D0

N∑
n=1

∇rn ·
[
∇rn f + f

∑
m �=n

∇rnφS(m)→S(n)(rn − rm)

]
. (F10)

We now compute LN eiq·r1 PN (X ). First, as LN PN = 0, at least one derivative should act on eiq·r1 . Second, as the limit k → 0 will
be taken, at most one derivative should act on eiq·r1 . We are left with

LN eiq·r1 PN (X ) = D0eiq·r1 iq ·
[

2∇r1 PN (X ) + PN (X )∇r1

∑
m �=1

φS(m)→S(1)(r1 − rm)

]
. (F11)
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To simplify, we consider only two particles; we will multiply
by the density afterwards. We also take PN (X ) = g0

αβ (r1 −
r2) = exp[−uαβ (r1 − r2)], leading to

LN eiq·r1 PN (X ) = −D0eiq·r1−uαβ (r1−r2 )iq · [2∇r1 uαβ (r1 − r2)

−∇r1φβα (r1 − r j )] (F12)

= −D0eiq·r1−uαβ (r)iq · ∇r
[
2uαβ (r) − φβα (r)

]
(F13)

= −D0eiq·r1−uαβ (r)iq · r̂φ′
αβ (r), (F14)

where r = r1 − r2. Integrating by parts on the left in Eq. (F9)
and taking the limit k → 0 leads to

�D = −
∑

β

μ2
0ρβIαβ (F15)

with

Iαβ = lim
s→0

∫
(q̂ · r̂)φ′

β→α (r)(s − Lαβ )−1

× g0
αβ (r)φ′

α→β (r)(q̂ · r̂)dr. (F16)

We introduce

χαβ (r, t = 0) = g0
αβ (r)φ′

α→β (r)(q̂ · r̂), (F17)

so that

lim
s→0

(s − Lαβ )−1χαβ (r, t = 0) = χ̃αβ (r, s = 0). (F18)

The Laplace transform is solution of

Lrχ̃αβ (r, s = 0) = −χαβ (r, t = 0)

= −e−uαβ (r)φ′
α→β (r)(q̂ · r̂). (F19)

Taking the ansatz

χ̃αβ (r, s = 0) = g0
αβ (r)Xαβ (r)q̂ · r̂, (F20)

Xαβ (r) is the solution of

2∇ · [e−uαβ (r)∇r (Xαβ (r)q̂ · r̂)]

= −D−1
0 e−uαβ (r)φ′

α→β (r)(q̂ · r̂). (F21)

Plugging the ansatz (F20) in the correction, we get

Iαβ = 1

3

∫
φ′

β→α (r)e−uαβ (r)Xαβ (r)dr, (F22)

so that, finally,

Deff − D0

D0
= −

∑
β

μ0ρβ

3kBT

∫
φ′

β→α (r)e−uαβ (r)Xαβ (r)dr.

(F23)

Finally, defining Yαβ = −μ0Xαβ/kBT , the correction and the
definition of Yαβ (r) read

Deff − D0

D0
=
∑

β

ρβ

3

∫
φ′

β→α (r)e−uαβ (r)Yαβ (r)dr, (F24)

and

2∇ · [e−uαβ (r)∇r (Yαβ (r)q̂ · r̂)] = 1

kBT
q̂ · r̂φ′

αβ (r)e−uαβ (r).

(F25)

We note that Eqs. (F25) and (F24) are analogous to Eqs. (F4)
and (F8) for the effective mobility, the only change being that
u′

αβ (r) in the right-hand side of Eq. (F4) is replaced by φ′
αβ (r)

in Eq. (F25). At equilibrium, φβα = uαβ and the Einstein
relation is recovered.

3. Numerical evaluation of the correction

Equations (F4) and (F25) defining q(r) and Yαβ (r) cannot
be integrated analytically in general. We rewrite the equa-
tions here in a dimensionless form. The correction to the
correlation satisfies

∇ · [e−u(r)∇(q(r)n · r̂)] = n · r̂v′(r)e−u(r), (F26)

where u(r) = uαβ (r) and v(r) = uαβ (r) for the mobility and
v(r) = φαβ (r) for the diffusion coefficient; the vector n is
arbitrary. In arbitrary dimension d , expanding this equa-
tion leads to

q′′ +
(

d − 1

r
− u′

)
q′ − d − 1

r2
q = v′. (F27)

The correction to the quantity A [A = μ or A = D, depending
on the function v(r) used to compute q(r)] is then given by

�A

A
= Sd−1ρ̄β

2d

∫ ∞

0
e−u(r)w′(r)q(r)rd−1dr, (F28)

where w(r) = φβα (r), and Sd denotes the surface of the d-
dimensional unit sphere.

Instead of solving for q(r), we introduce p = qe−u, which
is the solution of

p′′ +
(

d − 1

r
+ u′

)
p′

+
(

u′′ + d − 1

r
u′ − d − 1

r2

)
p = v′e−u. (F29)

With p, the correction reads

�A

A
= Sd−1ρ̄β

2d

∫ ∞

0
w′(r)p(r)rd−1dr. (F30)

For the correction to the pair correlation to be continuous
at zero (Eq. (F2)), the solution should satisfy p(0) = 0. If the
potentials diverge strongly at the origin, then this condition
can be replaced by p(ε) = 0, with small enough ε > 0. If the
potentials vanish beyond rc, then solving Eq. (F29) for u =
v = 0 leads to p(r) ∝ r1−d for r > rc. This relation can be
turned into the relation p′(r) = 1−d

r p(r), which may be used
as the second boundary condition at r = rc. In the case where
the potentials do not vanish beyond a given distance, such as
LJ potentials, this boundary condition can still be used with a
large enough rc. These two boundary conditions with the ODE
(F29) form a boundary value problem, which may be solved
numerically.
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