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ABSTRACT
Describing analytically the transport properties of electrolytes, such as their conductivity or the self-diffusion of the ions, has been a central
challenge of chemical physics for almost a century. In recent years, this question has regained some interest in light of Stochastic Density Field
Theory (SDFT) – an analytical framework that allows the approximate determination of density correlations in fluctuating systems. In spite
of the success of this theory to describe dilute electrolytes, its extension to concentrated solutions raises a number of technical difficulties,
and requires simplified descriptions of the short-range repulsion between the ions. In this article, we discuss recent approximations that were
proposed to compute the conductivity of electrolytes, in particular truncations of Coulomb interactions at short distances. We extend them to
another observable (the self-diffusion coefficient of the ions) and compare them to earlier analytical approaches, such as the mean spherical
approximation and mode-coupling theory. We show how the treatment of hydrodynamic effects in SDFT can be improved, that the choice
of the modified Coulomb interactions significantly affects the determination of the properties of the electrolytes, and that comparison with
other theories provides a guide to extend SDFT approaches in this context.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0165533

I. INTRODUCTION

Predicting accurately the transport properties of electrolytes,
such as their bulk conductivity when submitted to a constant elec-
tric field, or the self-diffusion coefficient of the ions, is a central issue
of chemical physics, with applications in many research domains,
from electrochemistry to soft matter physics. From a theoretical per-
spective, deriving analytical expressions of these observables starting
from elementary principles has been a continuing problem of sta-
tistical mechanics since the 1920s. Its difficulty lies in the fact
this it intertwines the Brownian diffusion of the ions, their pair
interactions (electrostatics at long-range, steric at short-range) and
hydrodynamic effects.

Determining the variation of transport coefficients as a func-
tion of electrolyte concentration was initiated by Debye and com-
pleted by Onsager.1 By considering the ions as point particles in
a continuous medium, Onsager’s equations led to limiting laws of
evolution of these quantities as a function of the square root of the
concentration. More realistic descriptions of the electrolyte solution
have provided mathematical expressions that extend the scope of

this theory. In particular, starting from the Smoluchowski equations
with 2N particles, two-ions densities evolution equations have been
derived, which generalize the Onsager equations.2,3 These studies
provide validation of the Onsager’s equations for applications at low
concentrations. Assessing the ionic conductivity involves the calcu-
lation of the average ion flux in a uniform steady-state system, in
the presence of an external electric field that is sufficiently weak to
ensure a linear response.

The case of dense electrolytes is more challenging, since it
requires to account for the short-range repulsion between the ions,
which becomes predominant when concentration increases. From
an analytical perspective, this requires an accurate description of
equilibrium pair distribution functions. For ionic concentrations
higher than 0.1 mol L−1, the replacement of the distribution func-
tions of Debye and Hückel by those given by the hypernetted chains
(HNC) or mean spherical approximation (MSA) theories turned out
to be decisive.4–7 At last, mode-coupling theory (MCT), combined
with time-dependent density functional theory, led to self-consistent
descriptions of the relaxation effect and allowed its time dependence
to be obtained accurately.8–12
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From a computational point of view, in the 1970s, new simula-
tion methods, that relied on continuous or implicit descriptions of
the solvent, allowed efficient computations for simple electrolytes,13

and accurate descriptions of their properties.14–16 Later on, the
effect of hydrodynamic interactions was added in these simulation
schemes.17,18 These were compared with the aforementioned analyt-
ical schemes, and it was shown that, to describe highly charged and
concentrated electrolytes, the joint use of Smoluchowski’s equations
and these equilibrium distributions together led to a quantitative
representation of the simulations.19 Finally, molecular simulations
of electrolytes with an explicit description of the solvent were also
employed to predict transport properties successfully.20–22

Recently, the analytical descriptions of bulk electrolytes has
gained a renewed interest in the context of Stochastic Density Field
Theory (SDFT). This approach consists in describing the positions
of the particles in the suspension as a collection of interacting over-
damped Langevin processes. Using Itô calculus,23 and relying on the
seminal works of Kawasaki24 and Dean,25 stochastic evolution equa-
tions for the density fields of the particles can be derived. Although
these equations are quite difficult to study in their original form,
linearized expressions were shown to provide accurate estimates
of transport coefficients in different kinds of suspensions, made
of either charged or neutral particles – a detailed review of these
results will be provided in Sec. II. However, in spite of its conve-
nience, this linearization of SDFT must be viewed as a perturbative
expansion: it only holds when the interactions between the parti-
cles are sufficiently weak, which implies that short-range hardcore
repulsion between the ions cannot be accounted for. Recently, Avni
et al.26 proposed a way to circumvent this difficulty by truncating the
Coulomb interaction potential below a cut-off radius – an approach
that provided acceptable estimates for the conductivity of simple
electrolytes up to concentrations of a few mol L−1. This linearized
SDFT approach also led to an analytical description of the Wien
effect,27 namely nonlinear corrections to Ohm’s law, that was pre-
dicted within Onsager’s approach,28,29 and that also received a surge
of interest with explicit- and implicit-solvent simulations.21,22

The goal of this article is to discuss the use of linearized SDFT
to study analytically the transport and diffusion properties of con-
centrated electrolytes. We first give a brief overview of SDFT and
recall in which contexts its linearized version has been applied.
Then, relying on the modified Coulomb potential introduced in
Refs. 26 and 30 that is technically compatible with linearized SDFT,
we study systematically the electrostatic and hydrodynamic contri-
butions to the conductivity and show how they differ from earlier
theoretical approaches, such as the mean spherical approximation
(MSA), or Brownian dynamics simulations, which both include
more realistic short-range interactions. From this observation, we
further show that the divergence of the hydrodynamic contribution
to conductivity, that limits the use of linearized SDFT to moderate
concentrations, can be corrected using a refined description of the
boundary conditions for the solvent at the surface of the ions. Then,
relying on a recent extension of SDFT,31 we compute analytically the
self-diffusion coefficient of the ions in the electrolyte and compare it
to earlier mode-coupling results. Finally, we offer a detailed discus-
sion of the approximate interactions potentials that are compatible
with linearized SDFT, and show how their choice strongly affects the
outcome of the calculations for both observables (conductivity and
self-diffusion).

II. A BRIEF REMINDER OF SDFT
A. General equations

We first recall the main equations of stochastic density field
theory (SDFT) and their derivation. For simplicity, we consider a
binary mixture of monovalent ions (N cations and N anions of
charge e± = ±e), submitted to a constant external field E0 = E0ez .
Their respective mobilities will be denoted by μ±, and their bare dif-
fusion coefficients by D± (we assume that the fluctuation-dissipation
relation holds, in such a way that D± = μ±kBT, where T is the tem-
perature of the solution and kB Boltzmann’s constant). The starting
point of stochastic density field theory (SDFT) is the set of cou-
pled overdamped Langevin equations obeyed by the positions of the
cations and anions r±1 , . . . , r±N

d
dt

r±a (t) = μ±F±a + u(r±a (t)) +
√

2D±ξ±a (t), (1)

where ξ±a (t) is a unit white noise

⟨ξ±a,i(t)⟩ = 0, (2)

⟨ξαa,i(t)ξ
β
b, j(t

′
)⟩ = δabδαβδijδ(t − t′), (3)

where i and j denote Cartesian coordinates, u is the velocity field of
the solvent, and F±a is the total force undergone by the considered
ion a, which reads

F±a = ±eE0 −∑
b≠a
∇v±±(r±a (t) − r±b (t))

−∑
b
∇v∓±(r±a (t) − r∓b (t)). (4)

We denote by vαβ(r) the pair interaction potential between one ion
of type α and one ion of type β separated by a distance r.

The central ideal of SDFT is to start from the 2N overdamped
coupled Langevin equations (1), and to derive instead the evolution
of the stochastic density fields of cations and anions, defined as

nα(r, t) =
N

∑
a=1

δ(r − rαa(t)). (5)

Using Ito calculus and following the seminal approaches by Dean25

and Kawasaki,24 one can show that the densities obey the following
stochastic equations:

∂tnα = −∇ ⋅ jα, (6)

with the fluxes

jα = nαu −Dα∇nα + μαf α −
√

2Dαnαζα, (7)

where ζα(r, t) are space-dependent unit white noises

⟨ζα,i(r, t)⟩ = 0, (8)

⟨ζα,i(r, t)ζβ,j(r
′, t′)⟩ = δαβδijδ(r − r′)δ(t − t′), (9)
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and f α is the force density originating from the external electric field
E0 and the interactions between the ions

f α = nαeαE0 − nα∑
β=±
∫ dr′nβ(r

′
)∇vαβ(∣r − r′∣). (10)

The simplest way to account for hydrodynamic effects is to assume
that the velocity field u and the pressure field p are the solutions of
the following equations:

∇ ⋅ u = 0, (11)

η∇2u = ∇p − f + − f −, (12)

which correspond respectively to the incompressibility condition
and to Stokes equation (η denotes the dynamic viscosity of the sol-
vent). Note that this is not the most general way to account for
hydrodynamic interactions,32 but that it is valid in the linearized
limit.33

B. Linearization
The evolution equations of the density fields nα(r, t) [Eqs. (6),

(7), and (10)], usually called “Dean-Kawasaki” (DK) equations, are
exact and completely explicit. However, under this form, they are
of limited practical use for several reasons: (i) first, the quantities
nα, defined as sums of delta-functions [Eq. (5)], are very singular
and lack physical interpretation (however, in spite of these singular
definitions, the well-posedness and meaning of the DK equations has
been the subject of several recent works in the mathematical34,35 and
physical32 literature); (ii) the equations obeyed by the fields nα are
non-linear [note in particular the non-local couplings through the
convolution integrals in Eq. (10)]; (iii) they involve multiplicative
noise, as seen in Eq. (7). Therefore, one needs to resort to further
approximations to use these evolution equations.

For instance, these equations can be linearized, assuming that
the density fields remain close to a constant value and that the fluc-
tuations around this base value remain small (nα = n0

α + δnα with
δnα ≪ n0

α). For our simple monovalent electrolyte, we will denote
by n the average density of cations and anions: n = n0

+ = n0
−. In the

absence of hydrodynamic effects, such a linearisation was first pro-
posed in the particular situation of non-charged colloids interacting
via soft potentials,36 and to study the Casimir force between plates
in an electrolyte.37 The validity of this approximation is restricted
to a limited range of parameters. In spite of this, this lineariza-
tion allows explicit calculations in different nonequilibrium settings,
which made it quite successful over the years. Indeed, it was used
in different contexts: microrheology of colloidal suspensions,36,38,39

active matter,40–45 driven binary mixtures.46 More recently, it was
applied to the study of electrolytes, in order to compute the con-
ductivity of “concentrated” electrolytes without47 and with hydrody-
namic interactions,26,27,33,48,49 the density-density and charge-charge
correlations,50,51 fluctuation-induced forces between walls,52,53 or
ionic fluctuations in finite observation volumes.54

C. Modified Coulomb potential
The linearization of the SDFT equations can be seen as a per-

turbative approach, that is only valid when the interactions between

particles are sufficiently “weak.” Moreover, from a computational
perspective, the resolution of the linearized equations only holds
when the potentials vαβ(r) can be Fourier-transformed. Since this
is the case for Coulomb interactions, electrolytes can be studied
within linearized SDFT. Indeed, the standard Coulomb poten-
tial for monovalent ions uαβ(r) = zαzβe2

/(4πε0εr) has a definite
Fourier transform ũαβ(k) = zαzβe2

/(ε0εk2
) [which can be computed

by introducing a screening exp(−λr) that regularizes the integral
and taking λ→ 0].

However, in order to describe concentrated electrolytes, one
has to account for the finite size of the ions and the resulting
short-range repulsion, which plays an increasing role on the trans-
port properties of the electrolytes as the ionic density increases.
For instance, many theoretical approaches have focused on the
“primitive model” of electrolytes, where the ion-ion short-range
repulsion is modeled by a pure hardcore repulsion. Although very
appealing for analytical developments, this model cannot be treated
using linearized SDFT, since the infinite repulsion energy below a
given cutoff value (which is typically the average of the diameters of
the ion) makes its Fourier transform singular.

In order to apply linearized SDFT, another cutoff of the
Coulomb potential was proposed by Avni et al.26 (based on earlier
work by Adar et al.30): below a given value a, the interaction energy
is set to zero

vαβ(r) = zαzβVco(r) = zαzβ
e2

4πε0εr
θ(r − a), (13)

where θ is the Heaviside function, and where the second equality
defines Vco(r). As it will become apparent throughout the paper,
the outcome of the linearized SDFT equations strongly depends
on the choice of the ion-ion interaction potentials. For simplicity,
when we will refer to “linearized SDFT,” it will be implicit that we
use the potential defined in Eq. (13) – this choice will be discussed
extensively in Sec. VII.

Relying on this modified potential, the conductivity of the
electrolyte, defined as

κ = lim
E0→0

⟨Jz⟩

E0
, (14)

where Jz is the current density along the direction z of the applied
field and ⟨⋅⟩ denotes an ensemble average, can be computed within
linearized SDFT. It can be split into different contributions

κ = κ0 + κel + κhyd, (15)

where κ0 = 2e2μ̄n is the conductivity at infinite dilution [μ = (μ+
+ μ−)/2 is the mean mobility], also known as the Nernst-Einstein
conductivity, and where κel (resp. κhyd) is the contribution orig-
inating from electrostatic (resp. hydrodynamic) effects. Here, we
simply recall the expressions for the electrostatic and hydrody-
namic contributions obtained with the modified potential given in
Eq. (13)26

κel = −
1

3π
κ0ℓB

λD
∫

∞

0
dx

x2 cos2 ax
λD

x4
+ 3

2 x2 cos ax
λD
+ 1

2 cos2 ax
λD

, (16)

κhyd = −
2
π
κ0rs

λD
∫

∞

0
dx

cos ax
λD

cos ax
λD
+ x2 , (17)
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with the Bjerrum length ℓB = e2
/(4πε0εkBT) (for numerical eval-

uations, we will take the value ℓB = 7 Å, corresponding to water
at 25 ○C) and the Debye screening length λD = 1/

√
8πℓBn. Inter-

estingly, we show in Sec. III that both these expressions can be
derived starting from linearized transport equations, completed with
approximate expressions of the ion-ion equilibrium distribution
functions, that are derived using the expression of the potential given
in Eq. (13), and the Ornstein-Zernike equation.

III. FUOSS-ONSAGER APPROACH
AND MEAN SPHERICAL APPROXIMATION
A. Outline of the calculation

In this Section, we present expressions of the hydrodynamic
and electrostatic contributions to conductivity (κhyd and κel), whose
derivations rely on the theory by Fuoss and Onsager.55 In this
approach, the electric field applied to the electrolyte E0 = E0ez
is assumed to be very small, in such a way that the structure
and dynamics of the fluid are weakly perturbed from equilib-
rium. Within this linear-response description, and relying on the
physical considerations detailed below, the contributions κhyd and
κel are expressed in terms of the ion-ion distribution functions.
The latter can be evaluated in different ways: using the Mean
Spherical Approximation, or using the modified Coulomb potential
considered in this paper.

1. Mean spherical approximation
First, the ion-ion distribution functions can be computed

within the Mean Spherical Approximation applied to the so-called
“primitive model” of electrolytes, where the pair potentials between
ions of types α and β read

vαβ(r) =
zαzβe2

4πε0εr
+ vHS(r), (18)

where vHS(r) denotes the simple hard-sphere potential (infinite for
distances smaller than the average diameter of the ions, and 0 oth-
erwise). The pair distribution function gαβ(r) between two ions of
respective types α and β, separated by a distance r and interacting
via the potential defined in Eq. (18), cannot be computed exactly for
a finite density of ions, but can be approximated. Let us introduce
the total pair correlation function hαβ(r) = gαβ(r) − 1, and the direct
correlation function cαγ(r), defined through the Ornstein-Zernike
relations56

hαβ(r) = cαβ(r) + n∑
γ
∫ dr′ cαγ(∣r − r′∣)hγβ(r

′
), (19)

which takes the simpler, deconvoluted form in Fourier space

h̃αβ(k) = c̃αβ(k) + n∑
γ

c̃αγ(k)h̃γβ(k). (20)

In the limit r →∞, the direct correlation function has the exact
expression: cαβ(r) = −vαβ(r)/(kBT). The idea of MSA is to keep
this expression even for finite values of r. Note that assuming that
it holds for any value of r is usually called the “random phase
approximation,” and is known to be particularly accurate for soft-
core potentials. However, in the present case, this expression is

obviously wrong at very short distances, where ions cannot over-
lap because of hardcore exclusion. Therefore, the closing relation on
which MSA relies is chosen as

⎧⎪⎪
⎨
⎪⎪⎩

gαβ(r) = 0 if r < a,

cαβ(r) = −vαβ(r)/(kBT) if r > a.
(21)

Let us emphasize that the first equation is exact, while the second
one is the key hypothesis of MSA.

The procedure to determine the ion-ion distribution function
dates back to the 1970s, and can be summarized as follows. The
piecewise approximation given in Eq. (21) is used in Eq. (19) with
a procedure due to Baxter.57 This yields a general matrix equation,
that was solved explicitly for the primitive model electrolytes by
Blum and and Hoye. We refer the reader to Ref. 58 for the gen-
eral method of resolution, and to Ref. 59 for expressions of the pair
correlation functions. For completeness, we give in Appendix A the
expressions of the direct correlation functions c̃αβ(k), from which
the ion-ion distribution functions, that are then used as input in the
Fuoss-Onsager approach, can be determined.

2. Modified Coulomb potential
Second, the ion-ion distribution functions can be determined

using the modified potential defined in Eq. (13) (importantly, in this
situation, the distribution functions are not expected to vanish at
short distances, as opposed to the key assumption of MSA). We then
find that the expressions derived from the linearized SDFT approach
are retrieved. This is detailed in what follows.

B. Hydrodynamic contribution to the conductivity
We first evaluate the hydrodynamic contribution to the con-

ductivity. When a given ion is set in motion by an external field
E0 = E0ez , it drags the solvent, whose velocity field will in turn affect
the motion of each ion. In order to estimate this effect, we need to
calculate δuhyd

α (r), the increment of velocity felt by a given ion of
type α located at position r under the effect of the electric field. It
is the solution of the Stokes equation η∇2 δuhyd

α = ∇p −∑β f β (com-

pleted with the incompressibility condition ∇ ⋅ δuhyd
α = 0), where f β

is the force density due to the displacement of the ions of type β,
which can be written in terms of the distribution functions as

f β(r) ≃ nzβeh0
αβ(r)E0. (22)

Here, h0
αβ(r) denotes the equilibrium distribution function between

two ions of types α and β separated by a distance r. Before evaluating
this distribution function, we first write the solution of the Stokes
equation, which reads

δuhyd
α (r) =∑

β
∫ dr′O(r − r′) ⋅ f β(r

′
), (23)

where O(r − r′) is the Oseen tensor, recalled in Sec. V.
Writing ∫dr′O(r − r′) ⋅ f β(r

′
) = ∫

dk
(2π)3 eik⋅rÕ(k) ⋅ f̃ β(k), and taking

r = 0 with no loss of generality, we get

δuhyd
α =∑

β

1
8π3η ∫

dk(
f̃ β
k2 −

k(k ⋅ f̃ β)
k4 ), (24)
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where we used the expression of the Fourier transform of the Oseen
tensor given in Eq. (51). Performing the angular integrals (using
spherical coordinates for k, with the polar angle measured with
respect to the orientation of E0), we find, for the projection of the
velocity increment along z,

δuhyd
α,z =

n
3π2η

∑
β

ezβE0∫

∞

0
dkh̃0

αβ(k), (25)

where h̃0
αβ(k) is the Fourier transform of the equilibrium distribu-

tion function between ions of type α and β, which can either be
estimated within MSA, or using the modified Coulomb potential.

1. Mean spherical approximation

If correlation functions from MSA are used, δuhyd
α and κhyd can

be evaluated explicitly. It was obtained4

δuhyd,MSA
α = −

zαeE0

3πη
Γ

1 + Γa
, (26)

where the screening parameter Γ is linked to the Debye length λD by
the relation

Γ =
λ−1

D

1 +
√

1 + 2a/λD
. (27)

Deducing κhyd =
ne
E0
∑α zαδuhyd

α , we find the hydrodynamic contribu-
tion to conductivity, normalized by its value at infinite dilution

κMSA
hyd

κ0
= −

Γa
1 + Γa

. (28)

This is the expression that was used to plot the hydrodynamic
contribution on Fig. 1.

2. Modified Coulomb potential
When the ions interact via the modified Coulomb potential

[Eq. (13)], i.e. when the short-range repulsion is not purely hard-
core, the distribution function can be estimated without MSA.
Using the random phase approximation c̃αβ(k) = −ṽαβ(k)/kBT [i.e.
c̃αβ(k) = −4πℓBzαzβ/k2 for the Coulomb potential], the coupled
Ornstein-Zernike equations [Eq. (20)] can be solved, and one finds

h̃Coul
αβ (k) =

−4πℓBzαzβ/k2

1 + 2n ⋅ 4πℓB/k2 =
−4πℓBzαzβ

k2
+ λ−2

D
, (29)

which coincides with the expression usually obtained from the
Debye-Hückel approximation.60

This prompts us to treat the modified Coulomb potential in a
similar way. Under the random phase approximation, and using the
expression of the Fourier transform of vαβ(r), we write the direct
correlation function as c̃αβ(k) = −4πℓBzαzβ cos (ka)/k2. Solving the
Ornstein-Zernike equations yields

h̃0
αβ(k) = −4πℓBzαzβ

cos (ka)
k2
+ λ−2

D cos (ka)
. (30)

Reinjecting this formula in the expression of the velocity increment
from the Fuoss-Onsager approach [Eq. (25)] yields

δuhyd
α,z = −

zαeE0

3π2ηλD
∫

∞

0
dx

cos ( ax
λD
)

cos ( ax
λD
) + x2

, (31)

where we used the change of variable x = kλD. Writing the corre-
sponding contribution to conductivity as κhyd =

ne
E0
∑α zαδuhyd

α , we
find exactly the expression of κhyd that was computed from lin-
earized SDFT [Eq. (17)]. Finally, note that, when taking the limit

FIG. 1. Comparison between linearized SDFT and MSA. Conductivity of NaCl (left) and KCl (right) electrolytes, rescaled by their value at infinite dilution κ0, obtained from
linearized SDFT (solid lines) and MSA (dashed lines). For KCl, we show results from Brownian dynamics simulations17 (symbols), with and without hydrodynamics. The value
of the conductivity is decomposed as the sum of its value at infinite dilution, an electrostatic contribution and a hydrodynamic contribution [Eq. (15)]. For both electrolytes, we
also show results from experimental measurements of the conductivity (stars).61 Finally, we represent the classical result from the Debye-Hückel-Onsager approach1 (dotted

lines), which reads: κ
κ0
= 1 − [

√

2
3
√
π
ℓ

1/2
B

ημ̄ +
2
√
π(
√

2−1)
3

ℓ
3/2
B ]n1/2.
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a→ 0 in the expression of the hydrodynamic contribution [both
in that from MSA (28) and in that from linearized SDFT (17)],
one retrieves the hydrodynamic contribution in the Debye-Hückel-
Onsager calculation of conductivity (expression recalled in the
caption of Fig. 1).

C. Electrostatic contribution to the conductivity
We now turn to the electrostatic contribution to conductivity,

that was denoted by κel in the main text. The physical origin of this
contribution is as follows: at equilibrium, around a given ion, the
ionic atmosphere (with a globally opposite sign) is spherical, and the
resulting electrostatic force on the ion is zero on average. However,
in a nonequilibrium situation, for instance when an external field
is applied, the motion of the ions perturbs the ionic atmosphere: the
deformed ionic distribution results in a nonzero net force on the ion.
This force is sometimes called “relaxation force” in the literature.

In order to model this effect, one introduces the two-body
time-dependent distribution functions ℱαβ(r1, r2, t), namely the
probability to find one ion of species α at position r1, and one ion
of species β at position r2, at time t. Neglecting three-body effects,
these functions obey the continuity equation

∂tℱαβ(r1, r2, t) = −∇r1 ⋅ [ℱαβ(r1, r2, t)Vαβ(r1, r2, t)]
−∇r2 ⋅ [ℱβα(r2, r1, t)Vβα(r2, r1, t)], (32)

where Vαβ(r1, r2, t) is the velocity of an ion of type α located at r1,
when there is an ion of type β at r2, at time t. This velocity is typically
evaluated as

Vαβ ≃ V s
α + μαezα(−∇ψα + E0) − kBTμα∇ lnℱαβ. (33)

The first term is the contribution of the background solvent – it
will be ignored here as the electrostatic and hydrodynamic contri-
butions are considered separately, and the latter was considered in
Sec. III B 2. The second term is the electrostatic contribution, where
ψα is the electrostatic potential around the ion α. The last term is
the diffusion force. Finally, this set of equations is completed by
the Poisson equation obeyed by the electrostatic potential ψα, which
reads

∇
2ψα(r) = −

e
εoεr

⎡
⎢
⎢
⎢
⎢
⎣

zαδ(r − rα) + n∑
β

zβhαβ(r)
⎤
⎥
⎥
⎥
⎥
⎦

. (34)

We now focus on the stationary limit of the continuity equa-
tion (32), and relate the two-body distribution functions to the total
pair correlation function as follows:

ℱαβ(r1, r2) ≃ n2gαβ(∣r1 − r2∣) (35)

= n2
[1 + hαβ(∣r1 − r2∣)]. (36)

With this rewriting, the continuity equation (32), together with the
Poisson equation (34), gives a closed set of equations for the electro-
static potentialsψα and total pair correlation functions hαβ. These are
solved by writing these quantities as the sum of an equilibrium term
(with exponent 0) and a nonequilibrium term (with the “prime”
exponent), that originates from the external field E0

hαβ = h0
αβ + h′αβ, (37)

ψα = ψ0
α + ψ

′
α. (38)

At leading order in the perturbation (i.e. keeping only terms linear
in h′αβ, ψ′α and E0), the continuity equation becomes

(μα + μβ)∇
2h′βα(r) + kBTe[zαμα∇2ψ′β(r) − zβμβ∇

2ψ′α(r)]

= kBTe(zαμα − zβμβ)E0 ⋅ ∇h0
βα(r). (39)

Relying on the linearity of Poisson equation (34), the latter can be
split into an equilibrium and a nonequilibrium part

∇
2ψ0

α(r) = −
e
εoεr

⎡
⎢
⎢
⎢
⎢
⎣

zαδ(r − rα) + n∑
β

zβh0
αβ(r)

⎤
⎥
⎥
⎥
⎥
⎦

, (40)

∇
2ψ′α(r) = n∑

β
zβh′αβ(r). (41)

Knowing the equilibrium distribution function h0
αβ (for instance

through mean spherical approximation, or through the random
random phase approximation), Eqs. (39) and (41) allow the deter-
mination of the nonequilibrium contributions to the electrostatic
potentials and the distribution functions. Finally, the electrostatic
relaxation force is estimated as

δFα = −∑
β

nβ∫
∞

0
∇ναβ(r)h

′
βα(r)dr, (42)

from which one deduces the electrostatic contribution to conductiv-
ity

κel

κ0
=
δFα,z

zαeE0
. (43)

1. Mean spherical approximation
Using the equilibrium distribution functions h0

αβ computed
within MSA, it was found4

κel

κ0
=
δFMSA

α

zαeE0
= −

ℓB

6a(1 + Γa)2

×
1 − e−

√
2a/λD

1 + 2
√

2ΓλD + 4Γ2λ2
D(1 − e−a/√2λD)

. (44)

This is the expression plotted on Fig. 1.

2. Modified Coulomb potential
As an alternative, by integration of the Poisson equation, the

electric field can also be evaluated from the convolution product
of the Coulomb potential with the surrounding charge distribution.
Now, in order to recover the results by Avni et al.,26 the Coulomb
potential can be replaced again by the modified Coulomb potential
given in Eq. (13). The equilibrium contribution to the electrostatic
potential is given by

ψ̃0
α(k) =

4πe
ε0εr

cos ka
k2

⎡
⎢
⎢
⎢
⎢
⎣

zα + n∑
β

zβh̃0
αβ(k)

⎤
⎥
⎥
⎥
⎥
⎦

. (45)

Using the relation from the Debye-Hückel approximation: h̃0
αβ(k)

= −zαeψ̃0
β/kBT, the expression previously found [Eq. (30)] is
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recovered. The contribution due to the external field is given by

ψ̃′α(k) =
4πe
ε0εr

cos ka
k2 ∑

β
nzβh̃′αβ(k). (46)

Then, taking the Fourier transform of the continuity equation (39),
and expressing the electrostatic potentials as a function of h̃′αβ(k),
the latter can be determined from h̃0

αβ(k). The relaxation force
is computed in Fourier space using the relation (∇ψ′α)r=0
= − 1

8π3 ∫dkikψ̃′α(k). This leads to

κel

κ0
= −

ℓB

3πλD
∫

∞

0
dx

x2 cos2 ax
λD

(x2
+ 1

2 cos ax
λD
)(x2

+ cos ax
λD
)

, (47)

which is exactly the expression of κel that was computed from
linearized SDFT [Eq. (16)]. Finally, in the limit a→ 0, both
Eqs. (44) and (16) yield the electrostatic contribution to conductiv-
ity predicted within the Debye-Hückel-Onsager theory (expression
recalled in the caption of Fig. 1).

IV. CONDUCTIVITY: COMPARING RESULTS
FROM LINEARIZED SDFT AND MSA

The electrostatic and hydrodynamic contributions are plotted
on Fig. 1 for two simple monovalent electrolytes: NaCl and KCl.
As noted in Ref. 27, the electrostatic and hydrodynamic contribu-
tions to conductivity diverge (to−∞ and+∞, respectively) when the
concentration of the electrolyte is too high. In order to discuss the
accuracy of the linearized SDFT approach, we compare the behav-
iors of these two contributions with earlier analytical results, that
relied on the Mean Spherical Approximation (MSA).

On Fig. 1, we plot the conductivity obtained from linearized
SDFT [Eqs. (15)–(17), see Table I for the numerical parameters]
and the conductivity obtained from MSA (the underlying assump-
tions and the derivation of the expressions of κel and κhyd are given
in Sec. III). For both theories, we plot separately the different con-
tributions, and several comments follow: (i) the main comment
is that, although the total expression of the conductivity obtained
from MSA and linearized SDFT appear to give very similar numer-
ical values, the behavior of their hydrodynamic and electrostatic
contributions are qualitatively and quantitatively different. In par-
ticular, the hydrodynamic contribution predicted by SDFT appear
to be non-monotonic. This observation is not in agreement with
Brownian dynamics simulations, which can be performed with and
without hydrodynamic interactions, in order to decipher the role
of the electrostatic and hydrodynamic contributions (simulation
results obtained in the case of KCl electrolyte are also shown on
Fig. 1). In addition, the electrostatic contribution is much more
important in linearized SDFT than in MSA, but both effects seem
to compensate; (ii) when compared to experimental measurements,
the full expression obtained from linearized SDFT (blue solid lines)
does not improve upon the MSA prediction (blue dashed lines).
This observation prompted us to look for different ways to improve
linearized SDFT in this context. In Sec. V, we will see how the
treatment of hydrodynamic interactions can be refined. At the end
of the manuscript, we will discuss the role played by the details
of the modified potential on the outcome of the linearized SDFT
calculations.

TABLE I. Summary of parameter values for the different electrolytes considered in
the manuscript.

Electrolyte
D+0

(10−9 m2 s−1
)

D−0
(10−9 m2 s−1

) a (Å) rs (Å)

LiCl 1.03 2.03 2.57 ⋅ ⋅ ⋅

NaCl 1.33 2.03 2.83 1.45
KCl 1.96 2.03 3.19 ⋅ ⋅ ⋅

V. ACCOUNTING FOR THE FINITE SIZE OF THE IONS
IN THE HYDRODYNAMIC EQUATIONS

The result for the hydrodynamic contribution to the conduc-
tivity, given in Eq. (17), is obtained by assuming that, from the point
of view of hydrodynamics, the ions are point-like, so that their finite
size only plays a role in the modified electrostatic potential. Indeed,
denoting by δu and δρ = δn+ − δn− the small perturbations around
homogeneous states, the hydrodynamics equations read

η∇2 δu = ∇δp − eδρE0, (48)

∇ ⋅ δu = 0. (49)

In the simplest possible description, their solutions are found assum-
ing that the ions are pointlike, and neglecting possible boundary
conditions at their surface. From a technical point of view, this is
achieved by using the Oseen tensor, defined as

Oij(r) =
1

8πη
(
δij

r
+

rirj

r3 ), (50)

which is the Green’s function to Eqs. (48) and (49) under these
assumptions. The Fourier transform of this tensor reads62

Õij(k) =
1
ηk2 (δij −

kikj

k2 ), (51)

and the solution of Eqs. (48) and (49) is26

δũ = eÕ ⋅ E0δρ̃(k), (52)

=
eE0

ηk2 (δij −
k2

x

k2 )δρ̃(k). (53)

The expression of the hydrodynamic contribution to the conductiv-
ity, given in Eq. (17), follows from this expression.

This calculation can be improved by assuming that, from the
point of view of hydrodynamics, the ions actually have a finite radius
rs (the Stokes radius), and that the solvent has a no-slip bound-
ary condition at the surface of the ions: u(r = rs) = 0. Under these
assumptions, the Green’s function of Eqs. (48) and (49) is now the
Rotne-Prager tensor, whose expression reads, in real space63

Rij(r) =
1

6πηrs
{

3
4
(

rs

r
)(

δij

r
+

rirj

r3 )+
1
2
(

rs

r
)

3
(δij − 3

rirj

r2 )}. (54)

In principle, the anions and the cations have different hydrody-
namic radii, so that the expression of the Rotne-Prager tensor would
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actually depend on the considered pair. However, we assume for
simplicity that there is only one radius involved in the Rotne-
Prager tensor, which is a reduced Stokes radius rs = 1/(6πημ̄) (see
Table I for numerical values). Note that this keeps the hydrodynamic
description consistent with the modified potential given in Eq. (13),
in which one assumes that the cutoff radius a is the same for all the
ion pairs. The Fourier transform of the Rotne-Prager tensor can be
deduced quite easily from that of the Oseen tensor by noting that63

∇
2
(
δij

r
+

rirj

r3 ) = 2(
δij

r3 − 3
rirj

r5 ), (55)

which yields64

R̃ij(k) =
1
η
(δij −

kikj

k2 )(
1
k2 −

r2
s

3
). (56)

The expression of the perturbation to the velocity field induced by
the displacement of the ions is now δũ = eR̃ ⋅ E0δρ̃(k), and the result
from κhyd now reads

κhyd = −
2
π
κ0rs

λD
∫

2πλD
rs

0
dx(1 −

r2
s x2

3λ2
D
)

cos ax
λD

cos ax
λD
+ x2 . (57)

Note that introducing the Rotne-Prager tensor makes the x-integral
(i.e. the k-integral since we use the change of variable x = kλD) diver-
gent at large x. This is regularized by introducing an upper cutoff
which corresponds to the size of the ion. We show on Fig. 2 the
linearized SDFT theory corrected by using the Rotne-Prager ten-
sor instead of the Oseen tensor, for NaCl electrolyte. Interestingly, it
seems like introducing this no-slip boundary condition for the sol-
vent at r = rs regularizes the hydrodynamic contribution, or at least
shifts its divergence to higher concentrations. At this point, it would
be tempting to account for higher-order corrections in the treatment

FIG. 2. Hydrodynamic description at the Rotne-Prager level. Comparison of the dif-
ferent hydrodynamic contributions to the conductivity of NaCl electrolyte, rescaled
by their value at infinite dilution κ0, obtained from SDFT with the Rotne-Prager
tensor [solid lines, Eq. (57)], linearized SDFT with the Oseen tensor [dash-dotted
lines, Eq. (17)] and MSA (dashed lines, see Sec. III for details).

of the hydrodynamic interactions. Indeed, the multi-body hydrody-
namic tensors, that allows one to go beyond the simple Rotne-Prager
treatment and to account for multi-body hydrodynamic interac-
tions, are known analytically.63 However, this would be inconsistent
with the treatment of the other interactions between the ions, which
are only accounted for at the pair level in the usual DK framework
[Eq. (1)].

VI. SELF-DIFFUSION COEFFICIENT
A. General equations

We now turn to another observable, namely the self-diffusion
coefficient of a tagged ion in the electrolyte. To compute this quan-
tity, it is not necessary to assume that the electrolyte is submitted to a
constant electric field force as in the calculation of the conductivity.
Without loss of generality, our goal is to calculate the self-diffusion
coefficient of the first cation and denote its position by R(t) ≡ r+1 (t).
The positions of the ions are still assumed to obey the overdamped
Langevin equations given by Eqs. (1)–(4) (with E0 = 0). We now
define the densities

n′+(r, t) =
N

∑
a=2

δ(r − r+a (t)), (58)

n′−(r, t) =
N

∑
a=1

δ(r − r−a (t)). (59)

Note that these quantities slightly differ from the densities defined
earlier, as the contribution from the ion that plays the role of a tracer
has been extracted from the summation. In what follows, we drop
the “primes” to ease the notation. The equation of motion for a
cation (other than the tracer) then reads

d
dt

r+a (t) = u(r+a (t)) +
√

2D+η+a (t) − μ+∇∫ dr′

× Vco(r+a (t) − r′)[n+ − n− + δ(r′ − R(t))], (60)

and that of an anion reads

d
dt

r−a (t) = u(r−a (t)) +
√

2D−η−a (t) − μ−∇∫ dr′

× Vco(r−a (t) − r′)[−n+ + n− − δ(r′ − R(t))], (61)

where we denote by Vco the modified Coulomb potential

Vco(r) =
e2

4πε0εr
θ(r − a). (62)

We define ρ = n+ − n−, and we summarize below the main
equations that constitute the starting point of our calculation. The
evolution equations for the densities n+ and n− are obtained as
before with Ito calculation25

∂tnα +∇ ⋅ jα = 0, (63)

with the fluxes

jα = nαu −Dα∇nα −
√

2Dαnαζα

− μαzαnα ∫ dr′∇Vco(r − r′)[ρ(r′, t) + δ(r′ − R(t))], (64)
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where z± = ±1, and where the noises ζα have zero average, and corre-
lations given by Eq. (9). The equation of motion of the tracer particle
reads

d
dt

R(t) = u(R(t)) +
√

2D+η+0 (t)

− μ+∇∫ dr′Vco(R(t) − r′)ρ(r′, t), (65)

with ⟨η+0 (t)⟩ = 0 and ⟨η+0,i(t)η
+
0, j(t

′
)⟩ = δi jδ(t − t′). The velocity

field of the solvent, denoted by u, obeys the following hydrodynamic
equations (Stokes equation and incompressibility condition):

∇ ⋅ u = 0 (66)

η∇2u = ∇p − δ(r − R(t))∫ dr′∇Vco(r − r′)ρ(r′, t)

− ρ(r, t)∫ dr′∇Vco(r − r′)[ρ(r′, t) + δ(r′ − R(t))], (67)

where p is the pressure field in the solvent.
These equations are then linearized using the perturbative

expansions

n± = n + δn±, (68)

ρ = n+ − n− = δn+ − δn−, (69)

u = δu, (70)

p = p0 + δp. (71)

Note that, although the densities n+ and n− do not correspond to
the exact same number of ions (N − 1 for the cation density and
N for the anion density), we still linearize them around the same
constant value n = N/V , which is a valid approximation in the ther-
modynamic limit (N →∞ and V →∞ with fixed number density
n = N/V). At leading order in these perturbations, we get the fol-
lowing evolution equations for the densities δn+ and δn− in Fourier
space:

∂tδñα = −Dαk2δñα +
√

2Dαnk ⋅ ζ̃α(k)

− μαnzαk2Ṽco(k)ρ̃ − μαnzαk2Ṽco(k)e−ik⋅R(t). (72)

Interestingly, we observe that the velocity field does not appear
anymore in the equations for the density fields δc̃α. This is due to the
incompressibility condition

∇ ⋅ (nαu) = ∇ ⋅ [(n + δnα)δu] ≃ n∇ ⋅ δu = 0 (73)

The hydrodynamic equations now read

∇ ⋅ u = 0 (74)

ηk2δũ = −ikδp̃. (75)

At leading order, the forces exerted by the ions on the solvent van-
ish, and the effect of solvent flows on the dynamics of the ions is
then negligible. Indeed, the interaction terms in the Stokes equa-
tion vanish because they either involve contributions of order δρ2

or terms of order δρ × δR(t), which are negligible since ∣δR(t)∣ ∼ 1/V
where V is the volume of the system. Therefore, the choice of the
right description for boundary conditions at the surface of the ions,
that was discussed in Sec. V, is here irrelevant.

We finally end up with the following set of equations (with α =
±1):

d
dt

R(t) =
√

2D+η+0 (t) − μ+∇∫ dr′Vco(R(t) − r′)

× [δn+(r′, t) − δn−(r′, t)], (76)

∂tδñα = −Dαk2δñα +
√

2Dαnk ⋅ ζ̃α(k) − μαnzαk2Ṽco(k)

× (δñ+ − δñ−) − μαnzαk2Ṽco(k)e−ik⋅R(t) (77)

that fully determine the dynamics of the tagged ion and that of
the ionic density fields within the linearized approximation. The
counterpart of these equations when the tracer is an anion can be
obtained straightforwardly.

B. Path-integral formulation
The first equation [Eq. (76)] can be seen as a simple Langevin

equation that describes the motion of the tracer particle. However, it
is not easy to compute the associated effective diffusion coefficient.
Indeed, this equation of motion involves on its rhs a functional of the
density fields δnα, whose evolution equations [Eq. (77)] also depends
on the tracer position R(t). We then end up with a set of equations
which are coupled nonlinearly.

A way to treat this coupling was proposed by Dean and
Démery,65 who proposed a perturbative path-integral method, to
compute the effective diffusion coefficient of the tracer at lead-
ing order in the coupling between the tracer and a fluctuating
environment. Here, the situation is more complicated, because the
tracer interacts with two fields at the same time (the density field
of cations and that of anions). We recently extended the Dean-
Démery method to compute perturbatively the diffusion coefficient
of a tracer coupled to multiple fields.31

We apply this method to the present case and obtain the fol-
lowing expression for the diffusion coefficient of the tagged cation
rescaled by its bare value D+ (the formula below applies to both
situations where the tracer is a cation or an anion):

Deff,+
D+

= 1 − ∑
α,β=±

Dαβ

D+
(78)

with

Dαβ

D+
=
μ+μβ

d ∫
ddk
(2π)d k4nzαṼ2

co∑
γ

zγ∑
ν=±1

2c(ν)αβ
(D+k2

+Λν)
2

×

⎡
⎢
⎢
⎢
⎢
⎣

δγβ + (D+k2
−Λν)∑

ε=±1

c(ε)γβ
Λν +Λε

⎤
⎥
⎥
⎥
⎥
⎦

(79)

where we defined the matrices,

m = k2
⎛
⎜
⎝

μ+(kBT + nṼco) −μ+nṼco

−μ−nṼco μ−(kBT + nṼco)

⎞
⎟
⎠

, (80)
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c(±) =
1
2s

⎛
⎜
⎝

±m++ ∓m−− + s ±2m+−

±2m−+ ∓m++ ±m−− + s

⎞
⎟
⎠

, (81)

the eigenvalues

Λ± =
m++ +m−−

2
±

1
2

√

(m++ −m−−)2
+ 4m+−m−+, (82)

and the quantity

s =
√

(m++ −m−−)2
+ 4m+−m−+. (83)

In order to get a more compact expression of the diffusion coef-
ficient, it is convenient to introduce a dimensionless interaction
potential Ũ(k) = nṼco(k)/kBT. Relying on the fact that the inte-
grand in the k-integral from Eq. (79) is spherically symmetric to
perform the angular integration, specifying this expression to the
case d = 3, we get the following formula, which applies to both sit-
uations where the tracer is a cation or an anion (D0 denotes the
corresponding bare diffusion coefficient):

Deff

D0
= 1 − ∫

∞

0
dk

32k2

π2n
(3 + Δ)(3ΔŨ + 2Δ + Ũ + 2)ΔŨ 2

× [((Ũ + 3) + (Ũ + 1)Δ)2
− S2
]
−2
[((Ũ + 1)2

(Δ + 1)2
− S2
]
−1

(84)

where we introduced the shorthand notation

S =
√

(Δ + 1)2Ũ 2
+ (Δ − 1)2

(2Ũ + 1), (85)

and where Δ = D−0 /D
+
0 (resp. D+0 /D

−
0 ) if the tracer is a cation (resp.

an anion). Equation (84) provides an explicit and general expression
for the effective diffusion coefficient of a tagged ion in the electrolyte,
and it is the main result of this Section. Although the k-integral can
be divergent depending on the analytical expression of the interac-
tion potential,31,65 we will focus on the truncated potential given in
Eq. (13), which does not cause any small-k or large-k divergence, and
which yields the following rescaled potential ũ:

Ũ(k) = 4πnℓB
cos (ka)

k2 . (86)

Consequently, the general expression given in Eq. (84) only depends
on three parameters: the electrolyte concentration n, the cutoff of the
truncated potential a (which will typically be measured in units of
the Bjerrum length, setting the dimensionless parameter ā = a/ℓB),
and the ratio between the bare diffusion coefficient Δ. We now
consider a few limit cases of Eq. (84).

C. Case where anions and cations
have the same mobility

We first focus on the particular case (which applies to KCl)
where anions and cations have the same mobility. In this situation,
we get the following expression for the effective diffusion coefficient
of the tracer, which is very simple and explicit:

FIG. 3. Self-diffusion: case where cations and anions have the same mobility.
(a) Self-diffusion coefficient as a function of the square-root concentration n1/2

as obtained from the “full expression” [Eq. (87)] and the “simplified expression”
[Eq. (88)]: the latter is obtained by neglecting the effect of the tracer on the bath.
In both cases, we take ā = a/ℓB = 0.3. (b) Self-diffusion coefficient as a function
of the square-root concentration n1/2 as given by Eq. (87), for several values of the
rescaled cutoff value ā. For ā = 0, we used the expression Eq. (89).

Deff

D0
= 1 − ∫

∞

0
dk

8k2

3
nℓ2

B cos2
(ka)

× {[4π cos (ka)ℓBn + k2
][8π cos (ka)ℓBn + k2

]}
−1

. (87)

This expression is plotted on Fig. 3(a): as expected, the self-diffusion
coefficient of an ion in the electrolyte is a decreasing function of the
concentration.

A frequent simplification of the derivation presented in
Sec. VI B consists in neglecting the effect of the tracer on the dynam-
ics of the density fields. This is referred to as the “passive case” in
Ref. 65, and has been used in different contexts.66–69 Concretely, this
is equivalent to neglecting the last term in the rhs of Eq. (77). This
yields the following expression for the effective diffusion coefficient
of the tracer:

Deff

D0
= 1 + ∫

∞

0
dk

32πk2

3
n2ℓ3

B cos3
(ka)

× {[4π cos (ka)ℓBn + k2
]

2
[8π cos (ka)ℓBn + k2

]}
−1

. (88)

It is interesting to note that this simplified version actually predicts
an unphysical behavior for the diffusion coefficient, which becomes
an increasing function of the overall concentration, and therefore
exceeds its bare value as concentration increases [Fig. 3(a)]. This
observation indicates that this simplification should be used with
caution.

D. Case of a vanishing interaction radius (a → 0)
We now consider the limit of vanishing interaction radius

(a→ 0) in Eq. (84). In this situation, the integral over k can be
computed exactly, and yields
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FIG. 4. Self-diffusion coefficients of ions in the electrolytes LiCl, NaCl and KCl: results obtained from linearized SDFT [Eq. (84), solid lines] and from the MCT/MSA calculation
(Ref. 7, symbols). Dashed lines: Onsager limiting law [Eq. (89)].

lim
a→0

Deff

D0
= 1 −

2
√
π

3
(
√

2 −
√

1 + 3Δ
2(1 + Δ)

)

√

nℓ3
B. (89)

Interestingly, this coincides exactly with the limiting law predicted
by Onsager.55,70

In order to investigate the accuracy of this simplified expres-
sion, we compare it to results obtained from Eq. (84) with a fixed
value of Δ and several values of the rescaled cutoff value ā = a/ℓB
[Fig. 3(b)]. Although the truncated potential is very simplified, we
observe that introducing a cutoff value a below which the potential
vanishes has a significant impact on the self-diffusion coefficient of
the tracer. A similar conclusion was reached when comparing the
conductivity predicted by the Debye-Hückel-Onsager theory with
the results from SDFT.26

E. General case and comparison to mode
coupling theory/MSA

We finally confront the result we obtained from linearized
SDFT [Eq. (84)] with earlier results obtained from a combination of
mode-coupling theory (MCT) and the mean spherical approxima-
tion (MSA).7,10 We consider three electrolytes: LiCl, NaCl and KCl.
As input to our analytical theory, we use the values of the bare diffu-
sion coefficients given in Ref. 10 and the values of the cutoff distances
for the modified Coulomb potential given in Ref. 26. These values
are recalled in Table I. Results are shown on Fig. 4. We find that,
for these three electrolytes, the self-diffusion coefficients estimated
from linearized SDFT calculations are very close to the MSA results.
We may attribute this to the fact that the hydrodynamic contribu-
tions, that appear to be wrongly estimated by linearized SDFT (at
least when it comes to the conductivity, see Sec. V) do not have any
effect on the self-diffusion coefficient at this order of approximation.
A similar property held within the MSA/MCT treatment mentioned
above.

VII. IMPORTANCE OF THE CHOICE
OF THE MODIFIED POTENTIAL

So far, we considered the modified Coulomb potential given in
Eq. (13), which is obtained by truncating the Coulomb interaction
below a radius r = a and setting the interaction energy to 0 below
this cutoff. In this Section, we will show how the modifications of
this potential, by changing the nature of the short-range part, can

affect the observables we have considered so far, namely conduc-
tivity and self-diffusion. For this purpose, we rewrite the potential
vαβ(r) under the form

vαβ(r) = zαzβVco(r) + uαβθ(a − r). (90)

The first term corresponds to the truncated potential studied so
far, the second term is a step “repulsion” term, written as a simple
rectangular function whose magnitude can be controlled with the
parameter uαβ (uαβ = 0 corresponds to the case studied so far, and is
represented on Fig. 5). In what follows, we study different possible
choices for this parameter.

A. Conductivity
A first option consists in assuming that the repulsion parameter

uαβ depends on the considered pair. More precisely, we make the
choice

uαβ = zαzβu0 (91)

FIG. 5. Modified interaction potentials: as defined in Eq. (90), for different choices
of the parameter uαβ. The last case, where uαβ = u0 for all pairs (α, β), is
discussed in Appendix B.
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FIG. 6. Influence of the repulsion parameter on the conductivity. Electrostatic (left) and hydrodynamic (right) contributions to conductivity, with the modified Coulomb potential
given in Eq. (90), and the repulsive contribution from Eq. (91), for different values of the repulsion parameter u0 (solid lines). The value u0 = 2.52 corresponds to u0 = a/ℓB.
Dashed lines: results from MSA calculations [Eqs. (44) and (28)].

in such a way that uαβ = u0 (resp. −u0) if both ions have the same
charge (resp. opposite charges). Although this is not the most phys-
ical choice (short-range repulsion is usually modeled by a charge-
independent contribution), this choice is motivated by the fact that
it can be used to make the interaction potential vαβ continuous at
the cutoff value r = a, with the choice u0 = ℓB/a. The case where
the short-range contribution is charge-independent (uαβ = u0) is
discussed in Appendix B.

The Fourier transform of the modified potential now reads

ṽαβ(k) =
kBT

2nλ2
Dk2 [cos ka +

u0

ℓBk
(sin ka − ka cos ka)]. (92)

It is straightforward to show that the corresponding expressions of
κel and κhyd are obtained from Eqs. (16) and (17) by making the
substitution

FIG. 7. Influence of the repulsion parameter on self-diffusion. Self-diffusion coef-
ficients of ions in NaCl electrolyte, with the modified Coulomb potential given
in Eq. (90), and the repulsive contribution from Eq. (91), for different values
of the repulsion parameter u0 (solid lines). The value u0 = 2.52 corresponds to
u0 = a/ℓB. Dashed lines: results from MSA/MCT calculations.

cos
ax
λD
→ cos

ax
λD
+
λDu0

xℓB
(sin

ax
λD
−

ax
λD

cos
ax
λD
). (93)

Importantly, the integrals involved in the expressions of κel and κhyd
diverge in the limit u0 →∞, which is consistent with the general
idea that linearized SDFT cannot account for hardcore interactions.
We show on Fig. 6 the influence of the value of u0 on the electro-
static contribution to the conductivity. Starting from u0 = 0, which
corresponds to the previous situation, and increasing u0 up to the
value (ℓB/a)kBT, where the modified potential becomes continuous
at r = a, we observe that the electrostatic contribution gets closer
and closer to the value predicted by MSA. When u0 ≫ kBT, the
magnitude of the electrostatic contribution tends to diverge, as can
be predicted from its analytical expression. Therefore, it seems that
there exists an optimal value for the parameter u0, that significantly
improves the estimates from linearized SDFT when compared to
earlier analytical schemes. A similar observation can be made about
the hydrodynamic contribution, which appears to be closer to pre-
dictions from MSA calculations when u0 is in the range 1–2kBT
(Fig. 6).

B. Self-diffusion
The effect of the value of the repulsion parameter on self-

diffusion can be studied in a similar way, by modifying the results
obtained in Sec. VI. Technically, in Eq. (84), we replace the poten-
tial ũ by the expression given in Eq. (92). We observe that, just
like the conductivity, the self-diffusion coefficient is highly sensitive
to the value of the repulsion parameter, and that its choice signif-
icantly affect the quality of the predictions from linearized SDFT
when compared to results from the MCT-MSA framework (Fig. 7).

VIII. CONCLUSION
In this work, we discussed several analytical theories for the

conductivity and self-diffusion in concentrated electrolytes. Among
them, linearized SDFT has been used quite extensively during the
past years, and it allowed very successful predictions in the limit
where electrolytes are very dilute. Recently, this analytical method
was extended to study concentrated electrolytes, in which the
short-range repulsion between ions plays a predominant role.
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A small-distance truncation of the Coulomb potential, which is
tractable within linearized SDFT, has been put forward in order to
account for short-range effects in a very simple fashion.

We showed that, within this approximation, the output of
linearized SDFT contradicts earlier analytical (Mean-Spherical
Approximation) and numerical (Brownian dynamics) estimates of
the conductivity of concentrated electrolytes. However, the lin-
earized SDFT treatment can be improved in several ways: (i) the
hydrodynamic effects can be accounted at the Rotne-Prager level
rather than at the Oseen tensor, which regularizes the hydrodynamic
contribution to conductivity, or which at least shifts any unphysical
divergence to higher densities; (ii) the short-range interaction energy
between ions, which was set to zero in earlier treatments, can instead
be set to a finite value, which may indeed improve the validity of the
results by Avni et al.26 when compared to other analytical schemes
such as MSA. Finally, we also computed the self-diffusion coefficient
of ions within SDFT: as opposed to the conductivity, it appears that
the dependence of this observable over ionic concentrations can be
captured more easily by the truncated interaction, but that it is still
highly dependent on the short-range details of the potential.

In conclusion, linearized SDFT is a particularly appealing tool
to compute transport and diffusion properties in fluctuating systems
of interacting particles, given its relative simplicity and ability to
yield explicit expressions. However, we emphasize that, in spite of
its advantages, it should be handled with caution, in particular when
it comes to describing effects dominated by the short-range interac-
tions between particles. Earlier analytical schemes, which often treat
these interactions in a more thorough manner, should be used as a
guide for the approximations that are implemented within linearized
SDFT. Finally, we emphasize that computational approaches that
rely on an implicit or coarse-grained representation of the solvent,
and which often correspond to the same level of description than
SDFT, constitute a very fertile field of research,71–73 that usefully
complement analytical descriptions.
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APPENDIX A: DIRECT CORRELATION FUNCTIONS
UNDER THE MEAN SPHERICAL APPROXIMATION

In this Appendix, we recall the expression of the direct cor-
relation functions that can be derived under the Mean Spherical
Approximation (see Sec. III A for details and references). These
functions can be written under the form

c̃αβ(k) = −
4πzαzβℓB

k2 + c̃s
αβ(k). (A1)

While the random phase approximation consists in assuming
c̃s
αβ(k) = 0, the mean spherical approximation yields

c̃s
αβ(k) =

4πa3

K6 [24dαβ − 2bαβK2
+ eαβK4

− [24dαβ − 2(bαβ + 6dαβ)K
2

+ (aαβ + bαβ + dαβ + eαβ)K
4
] cos K

+ [−24dαβK + (aαβ + 2bαβ + 4dαβ)K
3
] sin K], (A2)

where we use the shorthand notation K = ka for the dimensionless
wavevector, and where we define

aαβ = −
(1 + 2η)2

(1 − η)4 − 2B(
a
λD
)
ℓB

a
zαzβ, (A3)

bαβ = −
6η(1 + η/2)2

(1 − η)4 + [B(
a
λD
)]

2 ℓB

a
zαzβ, (A4)

dαβ = −
η(1 + 2η)2

2(1 − η)4 , (A5)

eαβ =
ℓB

a
zαzβ, (A6)

B(x) =
x2
+ x − x

√
1 + 2x

x2 , (A7)

with η = π
6 a3
(n+ + n−) the total packing fraction.

APPENDIX B: ALTERNATIVE MODIFICATION
OF THE COULOMB POTENTIAL

In this Appendix, we consider an alternative modification of
the Coulomb potential, and assume that the repulsive part does
not depend on the charge of the ion (uαβ = u0 for all pairs α, β).
We actually consider the following general expression for the pair
potential:

vαβ(r) = zαzβ
e2

4πε0εr
θ(r − a) + vrep(r), (B1)

where the repulsive part can first remained unspecified. With this
choice, the symmetry relation V++ = −V+− does not hold any-
more. Consequently, the field-field correlations (which are found
as the solutions of the linearized DK equations for the cation and
anion density fields) have different symmetries than in the situa-
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FIG. 8. Influence of the repulsion parameter on the conductivity. Electrostatic con-
tribution to conductivity, with the modified Coulomb potential given in Eq. (B1) for
different values of the repulsion parameter u0 (solid lines). The value u0 = 2.52
corresponds to u0 = a/ℓB. Dashed line: results from MSA [Eq. (44)].

tions considered before. First, we find that, under these conditions,
the repulsive part of the potential vrep has no influence on the
hydrodynamic contribution. Therefore it is sill given by Eq. (17).

Second, we find the following expression for the electrostatic
contribution:

κel = −2eμ̄∫
dk
(2π)3 n2k2

z(ṽ co(k) − ṽ rep(k))2

× [4k2
(

1
2
+ nṽco(k))(

1
2
+ nṽrep)[1 + n(ṽco + ṽrep)]]

−1
,

(B2)

where we introduced ṽco(k) = Ṽco(k)/kBT and ṽrep(k) = Ṽrep(k)/
kBT. In order to get a more explicit expression, we write the repulsive
part as before, under the form Vrep(r) = kBTu0θ(a − r). We get the
following expression for the electrostatic contribution:

κel = −
1

3π
κ0ℓB

λD
∫

∞

0
dx

x2
(cos ax

λD
− u0λD

ℓBx φ(
ax
λD
))

2

(x2
+ cos ax

λD
)(1 + u0λD

ℓBx3 φ( ax
λD
))(x2

+ 1
2 cos ax

λD
+ u0λD

2ℓBxφ(
ax
λD
))

, (B3)

where we introduced the shorthand notation φ(X) = sin X − X
cos X. We show on Fig. 8 the electrostatic contribution to conductiv-
ity as a function of the electrolyte concentration, for different values
of the parameters u0. As opposed to the case considered in Sec. VII,
it is difficult to improve the predictions from linearized SDFT with
this choice of the repulsive contribution.
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