
Absolute Negative Mobility of an Active Tracer in a Crowded Environment

Pierre Rizkallah,1 Alessandro Sarracino,2,3 Olivier Bénichou,4 and Pierre Illien1
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Absolute negative mobility (ANM) refers to the situation where the average velocity of a driven tracer is
opposite to the direction of the driving force. This effect was evidenced in different models of
nonequilibrium transport in complex environments, whose description remains effective. Here, we provide
a microscopic theory for this phenomenon. We show that it emerges in the model of an active tracer particle
submitted to an external force and which evolves on a discrete lattice populated with mobile passive
crowders. Resorting to a decoupling approximation, we compute analytically the velocity of the tracer
particle as a function of the different parameters of the system and confront our results to numerical
simulations. We determine the range of parameters where ANM can be observed, characterize the response
of the environment to the displacement of the tracer, and clarify the mechanism underlying ANM and its
relationship with negative differential mobility (another hallmark of driven systems far from the linear
response).
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Introduction.—Predicting the response of a tracer par-
ticle submitted to an external driving and evolving in a
complex environment is a central challenge in statistical
physics [1,2]. The relation between the force applied to the
tracer and its velocity can display a number of striking
anomalies, in particular, when the tracer evolves very far
from equilibrium. One of the most intriguing behaviors is
the onset of an inverse current, which is opposite to the
driving force and which was evidenced, for instance, in the
very simple setting of a Brownian particle forced in a
periodically modulated potential [3]. In the specific context
of particle transport, this effect is known as absolute
negative mobility (ANM).
This intriguing effect actually finds important applica-

tions in sorting micrometric particles. Relying on this
counterintuitive response, microfluidic chips that allow
efficient separations of particles have been successfully
designed [4–6], and recent developments may even allow
tunable mass separation [7]. At the theoretical level,
understanding ANM is a challenge. Indeed, this effect
emerges from the interactions between the tracer and its
environment, which needs to be modulated in space and/or
in time for ANM to emerge. This has motivated a whole
field of research in the past, and different ways to model
such an environment have been explored so far: through an
effective persistence of the tracer [8], periodic ratchets
[3,9–11], effective tracer-bath interactions [12], coupled
thermodynamic forces [13], or steady and periodic velocity

fields [14–16]. However, the case of an environment made
of mobile crowders (and the possibility for ANM to emerge
in such a setting) has not been addressed, in spite of its
importance in the modeling of transport in biological
context, for instance. This is a particularly difficult theo-
retical problem, since it requires the treatment of a many-
body problem.
Our model, which tackles this issue, considers an active

tracer particle submitted to an external force, which evolves
in a dynamical environment of mobile hardcore crowders
on a lattice, whose dynamics is accounted for explicitly.
This model thus belongs to the important class of exclusion
processes, which are paradigmatic models of nonequili-
brium statistical physics and which received considerable
attention, both in 1D [17,18] and in higher dimensions [19–
26]. On top of providing an explicit description of the
environment of the tracer, which allows us to characterize
the response of the environment to the displacement of the
tracer, this model is analytically tractable, gives accurate
results in a wide range of parameters, and elucidates the
conditions under which ANM is observed. We also present
a qualitative argument valid at low density, which explains
the main phenomenon in terms of the relevant characteristic
timescales. In particular, we show how ANM emerges from
the trapping of the tracer particle by the passive crowders.
Finally, our approach clarifies the relationship between
ANM and negative differential mobility (another hallmark
of driven systems far from the linear response).
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Model.—We consider a d-dimensional cubic lattice
(d ≥ 2) of unit spacing, with base vectors e1;…; ed (we
use the convention e−μ ¼ −eμ). The bath particles perform
continuous-time symmetric random walks: at times drawn
randomly from an exponential clock of average τ�, they
pick one of their 2d neighboring sites at random and jump
onto if it is free (otherwise, the jump is not performed). The
tracer particle also performs jumps onto neighboring sites,
but is under the influence of two forces: (i) a constant
external force, pointing in direction e1, and of intensity FE
and (ii) an active force of intensity FA and whose direction
eχ (χ ∈ f�1;…;�dg) changes randomly at exponentially
distributed times of average τα. This active force represents
the “propulsion” of the particle (for instance, that of a
microswimmer, such as a bacteria or an active colloid),
whereas the force FE represents some external driving
imposed on the active particle that may originate from a
solvent flow or a magnetic field, for instance [see Fig. 1(a)
for a sketch of the model]. The tracer jumps in direction

eμ if the target site is empty, with rate pðχÞ
μ =τ, where

pðχÞ
μ ¼ fexp ½ðFAeχ þ FEe1Þ · eμ=2�=Zg. The normaliza-

tion factor Z is such that
P

μ p
ðχÞ
μ ¼ 1 (we use the shorthand

notation
P

μ ≡P
μ∈f�1;…;�dg). The characteristic jump

time of the tracer τ will be taken as the unit time of the
model. Finally, the hardcore interactions between the
particles are enforced by the condition that there can only
be one particle per site. The position of the tracer at time t is
denoted by Xt, and we will be interested in its projection
along the direction of the external force Xt ≡ Xt · e1. The
velocity reached by the tracer (along direction 1) in the
stationary state will be denoted by V ≡ limt→∞ðdhXti=dtÞ.
Simple argument for ANM.—Before going into the

details of our analytical derivation, we present a simple
argument to explain the emergence of ANM in the model
described above and its relation to negative differential
mobility (NDM). The latter refers to the situation where a
particle submitted to a constant external force FE may
display a velocity that decreases with the intensity of the
force while remaining positive [22,26–33]. This effect
typically originates from the trapping effects induced by
the environment of the tracer when the former is not

mobile enough (see below for a description of this
mechanism) [28].
For illustration, we consider the simple situation where

the tracer is submitted to an active force FA that may only
point in directions �e1. In the limit where the persistence
time is greater than other timescales, the average velocity of
the tracer can therefore be estimated as the average of the
velocities conditioned on these two states V ≃ 1

2
½V0ðFEþ

FAÞ þ V0ðFE − FAÞ�, where V0ðFÞ is the stationary veloc-
ity of a passive particle (i.e., with FA ¼ 0 and/or τα ¼ 0)
submitted to an external force F. We assume that FE > 0,
and we first consider the case where the tracer does not
display negative differential mobility. Its velocity is then a
monotonic function of the force undergone by the tracer
[see Fig. 1(b) for a sketched representation of the force-
velocity curves]. In this situation, it is clear that V will be of
the sign of FE, and no absolute negative mobility can be
observed. However, when the tracer displays negative
differential mobility, one may observe the situation where
jV0ðFE − FAÞj > jV0ðFE þ FAÞj, therefore resulting in a
situation where average velocity V is negative although
FE > 0.
These simple considerations clarify the relationship

between ANM and NDM. To summarize, the velocity of
the active tracer can be understood as an average over the
velocities conditioned over the different possible orienta-
tions of the active force. If this conditional velocity is a
nonmonotonic function of the force (NDM), the average
velocity can become negative (ANM).
Results.—We now turn to the details of our analytical

approach. We define PχðR; η; tÞ as the probability that the
tracer is at position R, the active force in direction eχ , and
the environment in configuration η ¼ ðηrÞr∈Zd (where ηr is
a random variable equal to 1 if there is a bath particle on the
site r and 0 otherwise) at time t. This quantity obeys the
following master equation:

2dτ�∂tPχðR; η; tÞ ¼ LχPχ − αPχ þ
α

2d − 1

X

χ0≠χ

Pχ0 ; ð1Þ

where α ¼ 2dτ�=τα is a dimensionless rate of reorientation
of the active force, and Lχ is the evolution operator when
the active force is in direction eχ ,

LχPχ ¼
Xd

ν¼1

X

r≠R−eν;R
½PχðR; ηr;ν; tÞ − PχðR; η; tÞ�

þ 2dτ�

τ

X

μ

pðχÞ
μ ½ð1 − ηRÞPχðR − eμ; η; tÞ

− ð1 − ηRþeμÞPχðR; η; tÞ�: ð2Þ

We denote by ηr;ν the configuration obtained from η by
switching the occupations of sites r and rþ eν. The first
term in Eq. (2) accounts for the jumps performed by bath
particles, whereas the second term accounts for the jumps
performed by the tracer.

FIG. 1. (a) Sketch of the system under study: a tracer particle (in
green), which is active and submitted to an external driving,
evolves in a bath of passive crowders. (b) Typical force-velocity
curve of a passive tracer with and without negative differential
mobility (in purple and orange, respectively).
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From Eq. (1), we derive the expression of the average
velocity by multiplying Eq. (1) by Xt and averaging over all
positions R and lattice configurations η (see Supplemental
Material for details on analytical calculations [34]),

dhXti
dt

¼ 1

2dτ

X

χ

fpðχÞ
1 ½1 − kðχÞe1 � − pðχÞ

−1 ½1 − kðχÞe−1 �g; ð3Þ

where kðχÞr ¼ hηXtþriχ ¼ 2d
P

R;η ηRþrPχðR; η; tÞ is the
average occupation of position r in the frame of reference
of the tracer, conditioned on the active force being in
direction eχ . These quantities obey the following equation,
obtained by multiplying Eq. (1) by ηXtþr and summing over
all tracer positions and lattice configurations:

2dτ�∂tk
ðχÞ
r ¼

X

μ

ð∇μ − δr;eμ∇−μÞkðχÞr þ α

2d− 1

X

χ0≠χ

kðχ
0Þ

r

− αkðχÞr þ 2dτ�

τ

X

μ

pðχÞ
μ hð1− ηXtþeμÞ∇μηXtþriχ ;

ð4Þ
where ∇μk

ðχÞ
r ¼ kðχÞrþeμ − kðχÞr is a discrete gradient operator.

The evolution equation for the density profiles kðχÞr is not
closed because it involves the correlation functions
hηXtþeμηXtþriχ . Obtaining an evolution equation for these

correlation functions would actually involve correlation
functions of higher order, and so on. We then resort to a
decoupling approximation [28,35,36], which consists in
neglecting second order fluctuations around the mean,
implying hηXtþeμηXtþriχ ≃ kðχÞeμ k

ðχÞ
r . This approximation is

inspired by our previous work on the case of a passive
tracer submitted to a constant external force (FA ¼ 0 and
FE ≠ 0) [35]. We recently adapted this approximation
scheme to study the case of an active tracer with no
external force (FA ≠ 0 and FE ¼ 0) [36]. The present work
goes beyond both these studies, as it addresses the situation
where both the external force and the active force are
present. From a technical point of view, this increases the
complexity of the analytical approach, since we now lack
most of the symmetries that used to facilitate our derivation.
From a physical point of view, it reveals a new striking
phenomenon, namely ANM.
This approximation enables us to close Eq. (4) and to

obtain the following set of equations obeyed by the density
profiles kr:

2dτ�∂tk
ðχÞ
r ¼

X

μ

AðχÞ
μ ð∇μ þ δr;eμÞkr

− αkðχÞr þ α

2d − 1

X

χ0≠χ

kðχ
0Þ

r : ð5Þ

We denoted AðχÞ
μ ≡ 1þ ð2dτ�=τÞpðχÞ

μ ½1 − kðχÞeμ � and adopted

the convention kðχÞ0 ¼ 0. Note that this decoupling approxi-
mation preserves the spatial dependencies of the density

profiles and goes beyond trivial mean field, which would
consist in writing hηri ¼ ρ for any r.
We provide in the Supplemental Material [34] the

stationary solution of Eq. (5), which allows us to write
explicitly the density profiles kr in terms of their values at
the sites in the vicinity of the tracer keν. In turn, these values
are shown to satisfy a closed system of equations. This
finally provides the analytical solution of the stationary
profiles (up to the numerical solution of this implicit system
of equations) and of the stationary velocity [Eq. (3)]. For a
given value of the density, when the active force FA and the
characteristic jump time of the bath particles τ� are small
enough compared to that of the tracer τ, the average
velocity of the tracer remains positive at all values of
the external force FE. However, we observe that, for a
sufficiently large persistence time τα, when the active force
is large enough or when the bath particles are sufficiently
slow compared to the tracer (τ� ≫ τ), the velocity can
become a negative function of the external force [Fig. 2(a)],
which is the signature of ANM. We compare the value of
the velocity predicted by our analytical theory with results
fromMonte Carlo simulations of the microscopic dynamics
and observe an excellent agreement, which confirms the
relevance of our decoupling approximation to study the
dynamics of an active, driven tracer. As a comparison with
our previous work, we emphasize that the decoupling
approximation was even more accurate when it was
applied to calculate the diffusion coefficient of a tracer with
FE ¼ 0 [36].
Interestingly, we also show in the Supplemental Material

[34] that our approach also provides an analytical expres-
sion for the generalized Einstein relation [14,37] that is
derived explicitly frommicroscopic considerations. Finally,
our analytical framework, which fully accounts for the
microscopic details of the environment of the tracer, allows
us to quantify the perturbation induced by its displacement.
Indeed, as a by-product of our calculation, we compute

FIG. 2. (a) Stationary velocity of the tracer particle along the
direction of the external force FE on a 2D lattice. Lines:
decoupling approximation [Eqs. (3) and (5)]; symbols:
Monte Carlo simulations [34]; dashed line: qualitative argument
in the limit of infinite persistence [Eq. (7) for τα ¼ ∞]. (b) Density
profiles (relative to the reference value ρ) along the direction ofFE
in the frame of reference of the tracer, as a function of the distance
to the tracer r [here τα ¼ 50, corresponding to the red line of (a)]. In
both plots, the parameters are ρ ¼ 0.1; τ� ¼ 30; τ ¼ 1; FA ¼ 12.
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from Eq. (5) the density profiles in the reference frame of
the tracer. Their typical spatial dependence is plotted in
Fig. 2(b). It shows that ANM has a signature on the
response of the environment, and that a small density
excess may develop behind the tracer (r < 0) when its
average velocity becomes negative.
Phase diagram.—Relying on our analytical approach,

we can explore a wide range of parameters to determine
domains of existence of ANM. According to our previous
studies on NDM [28,30], for an infinitely persistent tracer
(in the present formalism, this corresponds to FA ¼ 0 and
FE > 0), this phenomenon occurs when, for a given value
of the density, the ratio between the jump time of the
obstacles and that of the tracer τ�=τ is sufficiently large.
Here, the emergence of ANM is also determined by the
parameters that control the activity of the tracer (the
magnitude of the active force FA and the average persist-
ence time of its orientation τα). In Fig. 3, we show the
critical value of the characteristic jump time of bath
particles τ�c (rescaled by τ) above which ANM occurs, as
a function of the active force FA for different values of the
persistence time τα and for a fixed value of the density of
crowders ρ, and confront our analytical predictions to
results from numerical simulations. Details on the pro-
cedure to construct this plot are given in the Supplemental
Material [34].
This phase diagram gives an insight on the range of

parameters where ANM can be observed. For instance, for
FA ≃ 10 and τ�=τ ≃ 10, it shows that ANM is observed as
soon as τα reaches a critical value comprised between 10
and 100. In order to relate these values to more realistic
systems, we can compute a Péclet number for the active
tracer as Pe ∼ v0=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
DTDR

p
, where v0 is the typical

propulsion velocity, and DT (respectively, DR ∼ τ−1α ) is
the translational (respectively, rotational) diffusion coeffi-
cient of the active particle. In our system of units, DT ¼ 1
and v0 ≃ 1 (when FA is large enough), so that we simply
get Pe ∼ ffiffiffiffiffi

τα
p

. In the example above, the condition for
ANM to be observed becomes 3≲ Pe≲ 10. Comparing to
typical values reported in the experimental literature [38],
we find that this condition can be easily reached for a wide
range of microswimmers.
Physical mechanism.—We now provide a physical inter-

pretation of the phenomenon, which elucidates qualita-
tively the mechanism at the origin of ANM. At low density
of bath particles, the obstacles can be assumed to diffuse
independently. For a given orientation of the active force χ,
the average waiting time of the tracer between two jumps is

τ þ ρτðχÞp , where τðχÞp is the mean time that the tracer spends
with a bath particles on one of its neighboring sites and
accounts for the “trapping” effect caused by the passive
crowders. We can evaluate this typical time by considering
that, when the tracer is at a given site R and is blocked by a
crowder located at site Rþ e1, the tracer can move forward
if one of these three independent events, which follow
exponential laws, takes place: (i) the obstacle moves in a
transverse direction with characteristic time 2dτ�=ð2d − 2Þ;
(ii) the active force changes direction with characteristic
time τα; and (iii) the tracer moves in a direction transverse
to the direction of the obstacle with characteristic time

τ=ð1 − pðχÞ
1 − pðχÞ

−1Þ. The mean trapping time there-
fore follows an exponential law of characteristic time

τðχÞp given by

1

τðχÞp

¼ ð2d − 2Þ
2dτ�

þ 1

τα
þ ð1 − pðχÞ

1 − pðχÞ
−1Þ

τ
: ð6Þ

The velocity of the tracer is then estimated as an average
over the directions of active force χ,

V ≃
1

2d

X

χ

pðχÞ
1 − pðχÞ

−1

τ þ ρτðχÞp

; ð7Þ

and the condition for the existence of absolute negative
mobility is given by dV=dFEjFE¼0 < 0. Using the estimate

of τðχÞp given by Eq. (6), we plot the critical value of the
average jump time of the bath particles τ�c above which
ANM is expected as a function of the active force FA
(Fig. 3), for different values of τα. This is compared to the
result from the decoupling approximation, and it appears
that our simple low-density argument is valid in a very wide
range of parameters.
These physical considerations show how, in the low-

density limit, the trapping of the tracer by passive crowders
can result in ANM when its activity is strong enough.
However, we emphasize that this approach would fail in

FIG. 3. Phase diagram for ANM. Above the lines, the theory
predicts absolute negative mobility. Solid lines: decoupling
approximation [Eqs. (3) and (5)]. Dotted lines: critical value
τ�c=τ determined from the low-density qualitative argument
[Eq. (7)]. Symbols: Monte Carlo simulations; a filled circle
means ANM is observed, an empty one means it is not.
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dense regimes, where the correlations between the passive
crowders would become predominant and would come into
play. Moreover, the nontrivial response of the environment
to the displacement of the tracer when ANM occurs
[Fig. 2(b)] cannot be predicted within this simplified
framework. The complete analytical solution presented
above, which stems from the master equation, and which
correctly captures these effects, is therefore necessary to
fully describe the present problem. Finally, note that, in the
case of an active tracer without external force, these
trapping effects were also at the origin of the nonmono-
tonicity of its diffusion coefficient as a function of the
persistence time τα [36]. Even though this did not involve
the same parameters as ANM, it shows how the two effects
are actually interlinked.
Conclusion.—We have shown that ANM can be

observed in a minimal model for an active particle sub-
mitted to a constant external force as a result of its
interactions with the other particles in its environment.
The analytical treatment of our microscopic theory pro-
vides an expression of the velocity of the tracer in this
setting, allows us to determine the conditions for ANM to
be observed, and gives insight into the response of the
environment to the nonequilibrium dynamics of the tracer.
Our framework can be applied to more complex geometries
(channel-like systems, for instance), and open new theo-
retical challenges: first, it will be interesting to investigate
how the present conclusions can be extended to continu-
ous-space situations, which will require other numerical
and analytical techniques; second, the behavior of an
active, driven tracer in a very dense bath of crowders will
be of particular interest, as many active matter theories are
now well explored in the high-density regime [39,40].

A. S. warmly thanks Ralph Eichhorn for fruitful dis-
cussions, in particular, on the qualitative argument for
ANM. A. S. acknowledges partial support from MUR
(Italian Ministry of University and Research) Project
No. PRIN201798CZLJ.
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