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Abstract We study a two-dimensional model of an active isotropic colloid whose propulsion is linked to the
interactions between solute particles of the bath. The colloid catalyzes a chemical reaction in its vicinity,
that yields a local phase separation of solute particles. The density fluctuations of solute particles result in
the enhanced diffusion of the colloid. Using numerical simulations, we thoroughly investigate the conditions
under which activity occurs, and we establish a state diagram for the activity of the colloid as a function
of the parameters of the model. We use the generated data to unravel a key observable that controls the
existence and the intensity of activity: The filling fraction of the reaction area. Remarkably, we finally show
that propulsion also occurs in three-dimensional geometries, which confirms the interest of this mechanism
for experimental applications.

1 Introduction

Many microscopic organisms are able to self-propel in
order to perform various biological tasks [1]. Inspired
by living systems, recent progress in physics and chem-
istry has resulted in the design of artificial self-propelled
colloids [2–4]. In this context, numerous theoretical or
experimental studies have investigated anisotropic col-
loids that generate gradients of solute concentration,
temperature or electric potential responsible for propul-
sion [5,6]. This is exemplified by Janus colloids whose
surface has asymmetric properties, for instance a cat-
alytic and a non-catalytic side, which results in strong
and persistent fluctuations in the density of the sur-
rounding solute particles [7–16].

Recently, the propulsion of isotropic colloids has
received a growing interest. It has been demonstrated
that anisotropy is not necessary to achieve self-
propulsion. In a system where a colloid emits a solute
(or catalyzes some reaction) isotropically around itself,
fluctuations of solute (or reactant/product) density can
arise in the vicinity of the colloid. These fluctuations
can be amplified, thus breaking the symmetry of the
bath surrounding the colloid. As a consequence, the
colloid displays an intermediate anomalous diffusion
and an enhanced diffusion on longer timescales [17–20].
Spontaneous polarization can also come from the dis-
placement of mobile catalysts attached to the surface of
the colloid [21], the imbalance of surface tension in the
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vicinity of an interfacial swimmer [22], or the nonlin-
ear coupling between the solute density and the flow at
the surface of the colloid [23–27]. This last mechanism
has later been used experimentally to trigger the self-
propulsion of large water droplets in an oil-surfactant
medium [28–33].

Despite this important body of literature on active
colloids, the solute–solute interactions are not taken
into account in most theoretical studies addressing the
propulsion of isotropic or anisotropic particles. Never-
theless, they can play a significant role, in particular
in crowded environments, under confinement, or when
they trigger a phase separation [34–36]. Here, we study
a mechanism in which the activity of 2D isotropic col-
loids arises from the interactions within the bath of
solute particles. We consider an isotropic colloid, ini-
tially immersed in a bath of solute particles that inter-
act with each other through purely repulsive interac-
tions (these particles are denoted by A). The colloid cat-
alyzes a A → B reaction in its vicinity that maintains
the system in a non-equilibrium situation. The B parti-
cles interact via a Lennard–Jones (LJ) potential. In this
model, fluctuations of solute density close to the colloid
may be amplified when there is a phase separation in
the LJ fluid. In bulk, the state of a LJ fluid depends on
the strength of the attraction in the interaction poten-
tial (denoted by ε) and on the density of solute particles
ρ. Interestingly, the diffusion of a 2D colloid in an infi-
nite bath of attractive particles close to a phase transi-
tion has been shown to be a non-monotonic function of
the temperature of the fluid [37,38]. In our model, a LJ
fluid surrounds the colloid, but it is not a bulk fluid: The
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LJ particles are confined in a finite domain around the
colloid. Therefore, we are modeling a phase separation
at a mesoscopic scale, rather than a macroscopic phase
transition. Such mesoscale phenomenon depends on the
shape and size of the LJ domain. There exists sets of
parameters for which the colloid self-propels when it is
surrounded by this mesoscale phase separation [39].

In this article, we investigate thoroughly the role of
the different parameters of the model (density of solute
particles, relative sizes of the colloid and solute parti-
cles, typical conversion rate from B to A), and elucidate
the conditions under which self-propulsion occurs. In
the case of 2D systems, we establish the state diagram
for activity. Besides, we define an observable that con-
trols the diffusion enhancement. It is based on the filling
fraction of the reaction area. This leads to the conclu-
sion that the self-propulsion mechanism relies mainly
on the number of particles inside the reaction area.
In addition to this extensive study of 2D systems, we
show that, strikingly, the diffusion enhancement can be
observed in 3D—an important observation for potential
experimental applications [40].

We describe the model in Sect. 2. In Sect. 3, we give
the state diagram that indicates the range of parame-
ters for which activity occurs. We also introduce and
discuss the influence of the filling fraction of the reac-
tion area. We sum up our results and analyze them
with this new insight. In Sects. 4.1 and 4.2, we inves-
tigate the influence of other parameters of the model:
the characteristic time of the reverse reaction and the
size difference between the solute and the colloid. We
show that these parameters do not affect significantly
the mechanism, which confirms its robustness. Finally,
we examine a three-dimensional version of our system
in Sect. 4.3.

2 Model and methods

We study a two-dimensional system in a square box
of length lbox with periodic boundary conditions. An
isotropic colloid of diameter σC is surrounded by N =
500 solute particles of diameter σA. Both the colloid
and the solute particles are embedded in an implicit
solvent. The trajectories of particles are computed from
Brownian dynamics simulations, where the overdamped
Langevin equation is integrated using an Euler scheme
[41,42]. The positions of each of the N + 1 particles in
the system at time t+Δt are deduced from the positions
at time t by

ri(t + Δt) = ri(t)− Di

kBT

∑

i�=j

∇U(|ri − rj |)Δt

+
√

2DiΔtηi

where ri is the position of particle i, Di its diffusion
coefficient at infinite dilution (i.e., the bare diffusion
coefficient), U is the pair interaction potential, kB the
Boltzmann constant and T the temperature. ηi is a ran-

dom variable, chosen from a Gaussian distribution with
zero mean, and variance equal to 1. We use reduced
units: Distances are measured in σA, time in DA/σ2

A
with DA the bare diffusion coefficient of particle A (i.e.,
DA/σ2

A is the time needed by a solute particle to diffuse
in an area of its diameter), and the energy is in kBT .

Initially, all the solute particles are of type A and
interact with each other via a purely repulsive Weeks–
Chandler–Anderson (WCA) potential:

UWCA(rij) =

⎧
⎨

⎩

4ε′
[(

dij
rij

)12

−
(

dij
rij

)6
]

if rij ≤ 21/6dij ,

0 otherwise,

(1)
where rij is the distance between i and j, dij = (σA +
σC)/2 if i or j is the colloid, and dij = σA otherwise.

The colloid C triggers a local phase separation in its
vicinity by catalyzing isotropically the reaction A+C →
B+C in a reaction area of radius rcut around itself. The
solute particles of type B interact with each other via a
short-ranged attractive Lennard–Jones (LJ) potential:

ULJ(rij) = 4ε

[(
σA

rij

)12

−
(

σA

rij

)6
]

, (2)

for which we set a cut off for rij ≥ 2.5dij to reduce com-
putational costs, as the long-range effects are negligible
here. We choose ε′ = 10, and ε varies.

Outside the reaction area, the reverse reaction B +
C → A + C takes place. This allows us to model a
system where there is a constant supply of A solute
particles that play the role of a fuel for propulsion.
The A → B and B → A reactions, which take place,
respectively, inside and outside the reaction area, occur
at exponentially distributed random times of respec-
tive averages τAB and τBA. The average reaction times
are taken identical and equal to 0.1, except in Sect. 4.2
where the influence of the value of τBA is studied. The
reactions then occur very fast compared to the other
timescales of the problem.

Under these conditions, a steady state is reached
where a Lennard–Jones fluid forms in the reaction area.
Outside the reaction area, there is a suspension of A
particles, which interact with each other via a purely
repulsive potential. The structure of the Lennard–Jones
fluid in the reaction area depends on the average solute
density ρ = N/l2box, on the intensity of the attraction
ε, and on the size of the reaction area, controlled by
rcut. We have shown that for some sets of parameters,
namely ρ = 0.1, and ε varying from 2kBT to 3kBT , self-
propulsion is observed [39]. In this case, the long-time
diffusion coefficient of the colloid, denoted by Deff and
defined by

Deff ≡ lim
t→∞

1
4t

〈[rC(t) − rC(0)]2〉, (3)

where rC(t) the position of the colloid at time t, is
larger than its value without reaction in the same solute
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bath Dnoreac. Indeed, in the reaction area, the Lennard–
Jones fluid demixes, which creates strong density fluc-
tuations in the vicinity of the colloid. Solute particles
polarize and form one or several droplets, which push
the colloid in the opposite direction. If the orientation
of droplets persists for long enough, the motion of the
colloid is transiently ballistic, and becomes diffusive at
long times, with Deff � Dnoreac.

In our previous paper [39], we have shown that the
ballistic motion of the colloid observed at intermediate
timescales was related to the persistent orientation of a
polarization vector p, that represents the polarization
of solute particles around the colloid and is defined by

p =
∑

i∈P
[ri(t) − rC(t)], (4)

where ri(t) is the position vector of solute i, P is the
circular area around the colloid, where solute particles
may interact directly with the colloid (we have chosen
the radius of this area to be (3σA +σC)/2). In what fol-
lows, we also compute the auto-correlation function of
this polarization vector 〈p(0) ·p(t)〉. An example of this
correlation function as a function of time can be found
in Sect. 4.2 (Fig. 9) and will be commented later. In any
case, this auto-correlation function is found to decay as
a power law at short times and exponentially at suf-
ficiently large times. We define the characteristic time
τp as the orientation persistence time. We extract τp

from an exponential fit of the auto-correlation function
〈p(0) · p(t)〉 ∝ e−t/τp at long times.

The simulation procedure is the following. First, sim-
ulations of the system without reaction are performed
until the equilibrium is reached. Second, simulations
with reaction are run starting from independent config-
urations taken from the equilibrium trajectories with-
out reaction. Then, once a steady state is reached in the
situation with reaction, the effective diffusion of the col-
loid, Deff , and the auto-correlation of the polarization
vector, 〈p(0) ·p(t)〉, are computed. The results are aver-
aged over all the independent realizations (about 500
realizations in any case). We define an error δD on the
estimation of the long-time diffusion coefficient (resp.
the diffusion coefficient without reaction) by computing
three values of Deff (resp. Dnoreac) for a smaller number
of realizations and by taking the standard deviation of
these three values. We assume that activity occurs if
Deff − δD > Dnoreac + δD.

3 Toward an observable to describe the
influence of solute on colloid activity

3.1 Local density around the colloid

As we will discuss in the next sections, the presence
of activity and the value of Deff/Dnoreac are strongly
related to the fraction of the reaction area that is filled
with solute particles. In this section, we introduce a

Fig. 1 Number of particles in the reaction area of radius
rcut, Nshell, divided by Nmax, the maximum number of par-
ticles that would fill the reaction area (defined in Eq. (5)),
as a function of time. The plots correspond to different val-
ues of rcut, for ρ = 0.3 and ε = 3. The dashed lines are
exponential fits of the simulation data. Note that, on this
plot, the initial time t = 0 represents the very beginning of
the simulation with reaction

parameter that enables a better understanding of the
propulsion mechanism: the number of particles inside
the reaction area, Nshell. In order to compare the dif-
ferent systems with each other, Nshell is normalized by
the maximum number of solute particles that would fill
the reaction area, denoted by Nmax. Nmax depends on
the reaction radius rcut, and on the maximum surface
packing fraction φmax through

Nmax = φmax
r2
cut − (σC/2)2

(σA/2)2
, (5)

where φmax = π
√

3/6 � 0.91 is the maximal packing
fraction for hard disks placed on a 2D hexagonal lattice.

The kinetics of the filling of the reaction area is shown
in Fig. 1 for fixed values of the density (ρ = 0.3) and of
the interaction strength between LJ particles (ε = 3),
and for different values of rcut. Starting from an ini-
tial equilibrium situation where the colloid is embed-
ded in a bath of A solute particles without any reac-
tion, the number of particles inside the reaction area
increases with time when the reaction occurs, due to
the LJ attraction between B solute particles. At steady
state, the colloid accumulates new particles in its vicin-
ity as it moves, and loses as much as it displaces its
reaction area with itself. Nshell/Nmax reaches a station-
ary value Nshell,∞/Nmax with a characteristic time τN.
This process can be modeled by the following exponen-
tial behavior:

Nshell(t)
Nmax

=
Nshell,∞
Nmax

− Nshell,∞ − N0

Nmax
exp(−t/τN) (6)

where N0 = N(0) is the initial number of particles in
the reaction area. The corresponding exponential fits
are represented by the dashed lines in Fig. 1 and are in
good agreement with computed data. The stationary
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Fig. 2 Stationary value of the number of particles in the
reaction area, Nshell,∞, divided by Nmax, the maximum
number of particles that would fill the reaction area, as a
function of rcut. The curves correspond to different values
of ε (different colors), for ρ = 0.1 plain lines and ρ = 0.3
dashed lines

Fig. 3 State diagram of the studied systems at ρ = 0.1
(top) and ρ = 0.3 (bottom). Colors indicate the value of
Deff/Dnoreac, where Deff is the long-time diffusion coeffi-
cient of the colloid (defined in Eq. (3)) and Dnoreac its value
in the absence of reaction, from lower values (blue) to higher
ones (dark orange). Square symbols indicate systems where
activity was reported, circles systems without activity. Col-
loid displays activity if Deff − δD > Dnoreac + δD

value Nshell,∞/Nmax is an increasing function of ε and
increases for small sizes of the reaction area rcut before
reaching a plateau (see Fig. 2). In what follows, time-
dependent quantities are all computed at the steady
state. Consequently, the simulation time is shifted so
that the new initial time t = 0 corresponds to about
3τN.

3.2 State diagram for activity

The influence of the parameters ε and rcut is summed
up on the diagrams in Fig. 3 for two solute densities: ρ =
0.1 (top) and ρ = 0.3 (bottom). The color represents

the relative value of the effective diffusion coefficient
compared to its equilibrium value Dnoreac: Colors are
ranging from blue (when Deff < Dnoreac) to dark orange
(when Deff > Dnoreac). Symbols indicate if activity is
observed (squares where activity occurs, circles if not).

As it appears in Fig. 3, top, at a relatively low solute
density (ρ = 0.1, with lbox = 70), activity occurs for
all the parameters tested and is increased when ε or
rcut increases. The results obtained at a higher density
of solute, ρ = 0.3, are displayed in Fig. 3, bottom. To
increase the density, the size of the simulation box was
decreased, keeping the same amount of solute particles
(lbox = 40). Again, simulations with different values of
the parameters ε and rcut were done. We observe that
the propulsion is more difficult to achieve for this higher
solute density, as the range of parameters where Deff is
significantly higher than Dnoreac is more restricted. For
example, activity occurs for all values of rcut investi-
gated here at ε = 2.5, but disappears for large reaction
areas (rcut ≥ 7.5) at ε = 3. Indeed, at a solute density
ρ = 0.3, the reaction area is more likely to be densely
filled with B particles than when ρ = 0.1. The dense
fluid that occupies the reaction area tends to hinder
the motion of the colloid.

3.3 A normalized local density as a key parameter
to predict activity

Figure 4 shows the long-time diffusion coefficient of the
colloid divided by its value in the absence of reaction
as a function of Nshell,∞/Nmax. The dashed line rep-
resents the threshold (Deff/Dnoreac = 1) above which
the colloid is active. All the data obtained for different
values of rcut, ε and ρ are shown here. Interestingly,
it appears that using the filling fraction of the reac-
tion area at steady state, measured here by the ratio
Nshell,∞/Nmax, we can collapse all the data on a sin-
gle line, at a given solute density. Even the values of
the effective diffusion coefficient obtained with a slower
kinetics of the reaction B → A, represented as green
stars, collapse on the other data at ρ = 0.1. Details on
the influence of this kinetic parameter are given in Sect.
4.2.

This representation underlines that the filling frac-
tion is a key parameter that controls whether there is
activity and its intensity. The influence of the filling
fraction of the reaction area is subtle, and we can dis-
tinguish three situations. As we have previously stated,
the propulsion is linked to the polarity vector p, which
is correlated with the force exerted by the solute parti-
cles on the colloid, and to the persistence time of its
orientation τp. At small filling fractions, solute den-
sity fluctuations in the vicinity of the colloid are very
small, the polarization vector has a small amplitude
and is characterized by a small persistence time τp;
thus, the relative increase of the diffusion coefficient
is limited. A second regime is observed at intermediate
values of the filling fraction, where propulsion appears
since there are enough particles in the vicinity of the
colloid to form persistent droplets. This results in a
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Fig. 4 Long-time diffusion coefficient of the colloid Deff

divided by the value without reaction Dnoreac as a function
of the filling fraction of the reaction area, measured by the
stationary number of particles in the reaction area normal-
ized by the maximum number of particles, Nshell,∞/Nmax.
Left: results obtained with a solute density ρ = 0.1 and
right: solute density ρ = 0.3. All data, corresponding to
different sets of parameters ε, and rcut, are collected here.
Each symbol corresponds to a value of the Lennard-Jones
parameter ε: �: 1; �: 1.5; �: 1.75; �: 2; �: 2.25; �: 2.5; �: 3;
+: 5. The green stars correspond to the system with ε = 3
and τBA = 10

highly enhanced diffusion. In this regime, both τp and
Deff/Dnoreac are an increasing function of the filling
fraction. At relatively low bath concentration (ρ = 0.1,
Fig. 4, left), only these two regimes are observed. At a
larger bath concentration (ρ = 0.3, Fig. 4, right), a non-
monotonous behavior is interestingly observed, reveal-
ing a third regime: When the filling fraction reaches a
critical value, the activity starts to decrease. This may
be related to a decrease of the polarization of the liquid
droplet. Indeed, as the droplet size increases, the liq-
uid may more likely push on opposite directions, thus
averaging out the resulting force. For high filling frac-
tions, activity is suppressed due to the formation of a
dense crystal around the colloid. Surprisingly, there are
still density fluctuations as the crystal is not centered
on the colloid. Large values of τp are obtained in this
case, but the side of the crystal situated in the same
direction as the polarization vector hinders the motion
of the colloid and suppresses the activity. This confirms
that the filling fraction is an important parameter in
the propulsion. A special case occurs for ρ = 0.3, ε = 5
and rcut = 5.5 for which a huge propulsion is observed,
with Deff/Dnoreac close to 30. This is actually a partic-
ular combination of the parameters that leads to this
situation. The solute density is high, and there is a
strong attraction between solute particles, but the reac-
tion area is small, and only 1 or 2 solute particles can
fit in the shell. This leads to a particular shape of the

Fig. 5 Mean squared displacements of the colloid as a
function of time in a log-log scale for different value of rcut

at ρ = 0.1 and ε = 3. Here σC = 10. Note that the MSD
has been computed taking an initial time corresponding to
the steady state of the system. Here the plot shows times
for t > 1 to zoom on the ballistic and enhanced diffusion
parts

LJ fluid inside the reaction area: the fluid surrounds
the colloid, but cannot not form a close shell because
of the geometric constraints. Consequently, the colloid
is propelled through the open part of the shell, which
favors a strongly enhanced diffusion.

4 Robustness of the activity to generic
changes in the geometry of the reactive
zone

4.1 Effect of the size of the colloid

In this part, we investigate the influence of the size of
the colloid. Increasing its radius enhances the size asym-
metry between colloid and solute particles. This results
in a change of the curvature of the reactive zone that
may affect the mechanism of droplet formation. The
colloid diameter is increased by a factor 2 (σC = 10
instead of σC = 5 previously). Our specific goal here is
to check whether activity is still present, and whether
the dependence of activity on the local solute density
follows the same trend for both colloid sizes. There-
fore, we chose parameters of the LJ fluid for which the
smaller colloid was found to be active. For each system
presented in this section, the average solute density is
ρ = 0.1, and we take ε = 3 as the diffusion was strongly
enhanced for these parameters for a smaller colloid. The
values of rcut are larger than in the previous section to
account for the larger size of the colloid. The values of
rcut vary between 8 and 11.5; these values correspond
to reaction areas of about the same thickness as those
obtained with rcut = 5.5 and rcut = 9 for a colloid twice
smaller.

We display in Fig. 5 the mean squared displace-
ments of the colloid as a function of time in a log–
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Fig. 6 Long-time diffusion coefficient of the colloid divided
by its value without reaction, Deff/Dnoreac, as a function of
the stationary filling fraction of the reaction area, measured
here by Nshell,∞/Nmax. Results obtained for both ratios
σC/σA are displayed, for ρ = 0.1 and ε = 3

log scale. Note that the initial time of this plot has
been actually rescaled as stated before and does cor-
respond to the steady state. As already observed for
σC = 5, the MSD has an intermediate ballistic regime,
and the colloid displays an enhanced diffusion with a
ratio Deff/Dnoreac = 15 at long times. The intermedi-
ate ballistic regime is particularly visible for the highest
reaction area (red plot). We give in Fig. 6 the values of
the long-time diffusion coefficient of the colloid as a
function of the filling fraction of the reaction area at
steady state Nshell,∞/Nmax: The results obtained with
both ratios of σC/σA coincide very well. Again, we see
that enhanced diffusion is mainly controlled by the fill-
ing fraction of the reaction area. All in all, we observe no
significant changes while increasing the ratio σC/σA by
a factor two: The mechanism that causes an enhanced
diffusion seems to be a robust feature of our model sys-
tem.

4.2 Influence of the kinetics of the backward
reaction B → A

Another important parameter of our model is τBA,
which controls the kinetics of the reaction B → A. In
particular, one may wonder whether the activity still
holds when this reaction is slower, which is expected
to create a cloud of B particles behind the colloid as it
moves. To investigate this, we consider the case ρ = 0.1,
ε = 3 and we change the reverse reaction rate in order
to make the reverse reaction 100 times slower: τBA = 10
instead of τBA = 0.1. We restrict our study to two reac-
tion areas: rcut = 7.5 and rcut = 10.5.

First, we monitor the amount of particles in the reac-
tion area as a function of time. Results are displayed in
Fig. 7. For both values of rcut, we observe that the filling
fraction of the reaction area increases when the kinetics

Fig. 7 Stationary number of particles in the reaction area
normalized by the maximum value, Nshell,∞/Nmax as a func-
tion of time for different values of τBA. The dashed line is
the fit using equation (6). The parameters of the model are:
ρ = 0.1, ε = 3, left : rcut = 7.5, right : rcut = 10.5

Table 1 Fitted values of Eq. (6) τN, and Nshell,∞, for sys-
tems with ρ = 0.1, ε = 3, σC = 5 and different reaction
rates τBA

τBA = 0.1 τBA = 10

τN Nshell,∞ τN Nshell,∞

rcut = 7.5 31 30 35 37
rcut = 10.5 36 77 41 84

Fig. 8 Mean squared displacements of the colloid as a
function of time, in a log-log scale for the systems with
ρ = 0.1, ε = 3, σC = 5 and two different values of the
characteristic time τBA of the reverse reaction B → A. Left:
rcut = 7.5. Right: rcut = 10.5. Note that the initial time
here corresponds to the steady state of the system

of the reverse reaction is slowed down. Exponential fits
agree well with simulation data, and the characteristic
time needed to reach the steady state, τN, is slightly
increased when the reverse reaction is slowed down (see
values in Table 1). The system under these conditions
is in a range where Deff/Dnoreac is an increasing func-
tion of the filling fraction. The MSD indeed confirms
that activity is still present, as it can be seen in Fig.
8. The colloid motion again displays an intermediate
ballistic regime. However, the effective diffusion coeffi-
cient is not significantly increased. Figure 9 shows the
auto-correlation function of the polarization vector p
for the systems investigated here (in a semi-log scale).
In every case, this function becomes exponential at long
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Fig. 9 Auto-correlation function of the polarization vector
p defined by Eq. 4 as a function of time in a log-log scale, for
the systems with ρ = 0.1, ε = 3, σC = 5 and two different
values of the characteristic time τBA of the reverse reaction
B → A. Left: rcut = 7.5. Right: rcut = 10.5. Note that
the initial time here corresponds to the steady state of the
system

times, and we can calculate the characteristic persis-
tence time τp from the slope. It clearly appears that
this correlation time increases for both values of rcut.
This can be intuitively understood: When the reverse
reaction is slowed, the total number of B solute parti-
cles in the system is higher than Nshell,∞ and the LJ
fluid expands over the edge of the reaction area. This
yields the formation of a larger droplet of B particles in
the vicinity of the colloid, which acts as an effective rcut

higher than the real one. If the reaction area becomes
too large, the droplet can come apart from the colloid
surface, decreasing the force induced by the polarization
vector p, and thus, the effective diffusion coefficient is
not significantly increased.

4.3 Propulsion in three dimensions

So far, all the presented results concern 2D simulations.
As the mechanism of droplet formation and the persis-
tence time of the droplet may depend on the dimen-
sion of the system, we also performed simulations for
the same model in three dimensions. The simulation
box is cubic with lbox = 22. We chose a solute density
ρ = 0.05, an interaction parameter ε = 3 and a reaction
radius rcut = 7.5. A snapshot of the system at steady
state is shown in Fig. 10. Qualitatively, we observe on
the figure the appearance of droplets of B particles
around the colloid, as was obtained in 2D. The mean
squared displacement of the colloid as a function of time
at steady state is given in Fig. 11, left (again, where the
time was rescaled as previously described, and the plot
begins at steady state). We observe a behavior similar
to 2D systems: The MSD has a ballistic motion at inter-
mediate times and becomes linear in time at long times.
Importantly, we obtain again an enhanced diffusion at
long time with Deff/Dnoreac ∼ 11 for the parameters
used here. The auto-correlation function of the polar-
ization vector p is shown in Fig. 11, right, in a semi-log
scale. It is exponential at long times and characterized
by a persistence time τp of the same order of magni-

Fig. 10 Snapshot of the system studied in three dimen-
sions, at steady state. The density of solute particles is
ρ = 0.05, the intensity of the LJ attraction is ε = 3, and the
size of the reaction area is rcut = 7.5

Fig. 11 Dynamic quantities obtained at steady state for a
3D system with the solute density ρ = 0.05, the LJ attrac-
tion ε = 3, and the reaction area of radius rcut = 7.5. The
case with reaction, that displays activity (in red) is com-
pared to the case without reaction (in green). Left: mean
squared displacement of the colloid as a function of time
in a log–log scale. Right: auto-correlation function of the
polarization vector p as a function of time for the system
with reaction

tude as in 2D [39]. It appears thus that all the essential
features of the 2D propulsion mechanism still hold at
3D: Droplets form in the reaction area, which push the
colloid with a persistent orientation.

5 Conclusion

We propose a model in which activity arises from den-
sity fluctuations in the vicinity of an isotropic colloid.
In this article, we clarify the influence of the relevant
parameters for the emergence of self-propulsion. We
show the results of simulations performed for a wide
range of parameters. We highlight that the filling frac-
tion of the reaction area Nshell,∞/Nmax is a key parame-
ter to determine whether there is activity and its inten-
sity. We find that we can collapse all the data using this
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observable. We show that our mechanism is robust as
activity still occurs while increasing by two the relative
size σC/σA, and slowing the reverse reaction down by
a factor 100. The mechanism also still holds in three
dimensions. In a future work, we will use this mecha-
nism and study the collective dynamics of several active
colloids along with the structural properties [43]. In par-
ticular, this will be the opportunity to discuss the links
between our model and usual models for active parti-
cles, such active Brownian particles [2].
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