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Exact time dependence of the cumulants of a tracer position in a dense lattice gas
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We develop a general method to calculate the exact time dependence of the cumulants of the position of a
tracer particle in a dense lattice gas of hardcore particles. More precisely, we calculate the cumulant-generating
function associated with the position of a tagged particle at arbitrary time, and at leading order in the density of
vacancies on the lattice. In particular, our approach gives access to the short-time dynamics of the cumulants of
the tracer position, a regime in which few results are known. The generality of our approach is demonstrated by
showing that it goes beyond the case of a symmetric 1D random walk and covers the important situations of (1)
a biased tracer, (2) comblike structures, and (3) d-dimensional situations.
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I. INTRODUCTION

Understanding and characterizing tracer diffusion in
crowded environments is central in numerous biological and
physical contexts. In living systems, the interplay between
the diffusion of tracer particles (fuelled by thermal fluctua-
tions, active processes, or chemical reactions) and complex
environments (which generally hinder their motion) controls
many biological processes [1]. Quantifying tracer diffusion
can also be used as a mean to probe the mechanical and
rheological properties of different systems, such as colloidal
suspensions or complex fluids, through passive and active
microrheology [2–4].

These examples, in which the statistical properties of tracer
particles are controlled by the interactions with their envi-
ronment, are the motivation for a whole field of theoretical
research. Among the different routes that were employed to
characterize the statistics of diffusing particles in crowded
environments, lattice gases of hardcore particles that jump at
exponentially distributed times (often referred to as exclusion
processes) have been the subject of many studies and have
become central models of statistical mechanics [5,6]. For in-
stance, such models have been used to predict the universal
long-time tails of the velocity autocorrelation functions that
were measured in the continuum [7–10]. Importantly, these
models were also employed to compute the diffusion coeffi-
cient of a tracer particle. In dimension 2 or greater, different
mean-field-like approximations were designed to estimate the
diffusion coefficient of the tracer as a function of the density
of the bath [11–13]. In the case of 1D systems, one can
mention recent achievements which resulted in the derivation
of exact results concerning tracer properties, including the
calculation of its large deviations [14–17] and of bath-tracers
correlations [18,19].

However, these results, whether exact or approximate, are
generally valid only in the long-time limit, because their

derivation relies on hydrodynamic limits or large devia-
tions approaches [14–19]. A notable exception is provided
in the dense limit by the approach by Brummelhuis and
Hilhorst [20,21], later extended to the case of a biased
tracer [22–25]. However, we stress that this approach is intrin-
sically discrete in time. Even though the real continuous-time
description of exclusion processes, where particles jump at
exponential times as defined above, is retrieved in the long-
time limit, this approach fails to predict the dynamics of the
tracer at short and intermediate times. So far, the only avail-
able results at arbitrary time concern the first cumulants in
the low-density regime with immobile bath particles [26,27],
the high-density regime for a symmetric tracer in one dimen-
sion [18], or the 1D situation at arbitrary density, but under a
formulation that does not allow the derivation of fully explicit
results [28]. Finally, a general quantitative description of the
dynamics of the tracer for arbitrary time is lacking.

In this article, we fill this gap and calculate the exact and
complete time dependence of the cumulants of a tracer particle
in a dense lattice gas. We develop a general methodology
which covers the important cases of (1) a biased tracer, (2)
comblike structures, and (3) d-dimensional situations. These
results fully quantify the dynamics of tracer particles in exclu-
sion processes, which are paradigmatic models of statistical
mechanics.

II. MODEL AND OUTLINE OF THE CALCULATIONS

We consider a lattice populated by particles at a density
ρ between 0 and 1, which are initially positioned uniformly
at random on the lattice, with the restriction that there can
be only one particle per site. We adopt the usual dynamics
of exclusion processes, which evolve in continuous time, and
we assume that each particle has an exponential clock of time
constant τ = 1. When the clock ticks, each particle chooses
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to jump on one of its z neighboring sites with probability 1/z.
If the arrival site is empty, the jump is done. Otherwise, if
the arrival site is occupied, the jump is canceled. Note that,
in one dimension, this process corresponds to the celebrated
symmetric exclusion process (SEP) [5,6].

The tagged particle (TP) is initially at the origin
x(0) = 0, and we study its displacement with time x(t ) =
[x1(t ), . . . , xd (t )]. We define the cumulant-generating func-
tion (CGF) ψ (k, t ) ≡ ln〈eik·x(t )〉. We will consider the cumu-
lants of the position projected onto one direction of the lattice,
say, direction 1 [x1(t ) = x(t ) · e1]:

κn(t ) = 1

in

(
∂nψ (k, t )

∂k1
n

)
k=0

. (1)

Our goal here is the determination of the cumulant-generating
function ψ (k, t ) and the cumulants κn(t ) in the high-density
limit ρ → 1 and for arbitrary time t . We will define their
rescaled high-density limit as κ̄n = limρ→1 κn/(1 − ρ), where
ρ0 = 1 − ρ is the density of vacancies on the lattice.

III. FROM A SINGLE VACANCY TO THE DENSE REGIME

Relying on the derivation that was originally proposed in
a discrete-time description [20,21], we start by considering
a system of finite size N in which all the sites are occupied
except M of them (Fig. 1). We call these empty sites va-
cancies, and their fraction is denoted by ρ0 = M/N = 1 − ρ.
Now, in the high-density limit (ρ0 = M/N → 0), we note that
the vacancies perform independent random walks and interact
independently with the TP. We neglect events of order O(ρ2

0 )
in which two vacancies interact with each other, compared to
events of order O(ρ0) in which one vacancy interacts with the
TP. This gives exact results at linear order in the density of va-
cancies ρ0. We call p1(x|y, t ) the probability that, in a system
with a single vacancy initially at y, the TP has reached site x
at time t knowing that it started from the origin. In Fourier
space, the probability to find the tracer at a given location
given that the vacancies were initially at positions y1, . . . , yM
can be written as a product of single-vacancy propagators
p1 (Appendix A). Averaging over the initial positions of the
vacancies and taking the thermodynamic limit of M, N → ∞

(a)

(b) (c)

FIG. 1. For each of the considered geometries [1D (a), comb
(b), 2D (c)], the continuous-time random walks of the particles are
mirrored by the random walks of the vacancies (brown squares). The
latter perform continuous-time nearest-neighbor symmetric random
walks.

with fixed ρ0, the cumulant-generating function reads

lim
ρ0→0

ψ (k, t )

ρ0
=

∑
y�=0

[ p̃1(k|y, t ) − 1], (2)

where we use the following convention for Fourier trans-
forms: φ̃(k) = ∑

x eik·xφ(x). Let us emphasize the meaning
of Eq. (2): the full probability law of a TP at high density is
encoded in a much simpler quantity, namely, the propagator
of the tracer in a system where there is only one vacancy. This
expression is the continuous-time counterpart of the discrete-
time approach [20,21].

Now, using standard techniques from the theory of random
walks on lattices [29], we show how to express the single-
vacancy propagator p1(x|y, t ) in terms of first-passage time
(FPT) densities associated with the random walks performed
by the vacancies. We consider that there is only one vacancy
on the lattice, initially at site y. Let f (0|y, t ) be the probability
that the vacancy arrives at the origin for the first time at t ,
and f ∗(0|eν |y, t ) be the probability that the vacancy arrives at
the origin for the first time at t , knowing that it was at site eν

right before reaching the origin. For simplicity, we will use
the notation e−μ = −eμ (μ ∈ {±1, . . . ,±d}). The propagator
p1(x|y, t ) can be decomposed over the first passage of the
vacancy on the origin:

p1(x|y, t )

= δx,0

(
1 −

∫ t

0
dτ f (0|y, t )

)
+

∑
ν

∫ t

0
dτ p1(x − eν | − eν, t − τ ) f ∗(0|eν |y, τ ),

(3)

where the sum runs over all the directions ν ∈ {±1, . . . ,±d}.
One remarks that the same procedure can be applied to the
total number n of arrivals of the vacancy at the origin before
time t :

p1(x|y, t )

= δy,0

(
1 −

∫ t

0
dτ f (0|y, t )

)

+
∞∑

n=1

∫ ∞

0
dt1 · · · dtn

∫ t

0
dτ δ

(
t −

n∑
i=1

ti − τ

)

×
∑
ν1

· · ·
∑
νp

δeν1 +···+eνp ,x

(
1 −

∫ τ

0
dτ ′ f (0| − eνp, t )

)
× f ∗(0|eνp | − eνp−1, tn) · · · f ∗(0|eν2 | − eν1 , t2)

× f ∗(0|eν1 |y, t2). (4)

These equations relate the single-vacancy propagator p1 to the
first-passage time densities f and f ∗. Together with Eq. (2),
these equations constitute the starting point of our analysis.

For clarity we consider separately: (1) the situation where
the lattice is treelike, i.e., the situation where there is a sin-
gle minimum-length path linking two arbitrary sites of the
lattice (this will cover the case of one-dimensional and comb-
like lattices) and (2) the situation where the lattice is looped,
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i.e., the situation where there is more than one minimum-
length path linking two arbitrary sites of the lattice (this will
cover the case of lattices of dimension 2 and higher).

IV. TREELIKE LATTICES

We first consider treelike lattices as shown in Figs. 1(a)
and 1(b). We show in Appendix B that, on these geometries,
the single-vacancy propagator (in Laplace domain) is simply
related to the FPT densities through the relation

ˆ̃p1(k|y, u) = 1

u

[
1 + (

eiμk − 1
) 1 − f̂−μ(u)

1 − f̂1(u) f̂−1(u)
f̂ (0|y, u)

]
,

(5)
where we introduce the shorthand notation f̂ν (u) =
f̂ (0|eν, u), and where we define the Laplace transform
as ϕ̂(u) = ∫ ∞

0 dt ϕ(t )e−ut . One can use this expression in
Eq. (2) to obtain the cumulant-generating function at high
density in terms of first-passage quantities of a single vacancy.
The last step consists in studying the random walk of a single
vacancy to compute f̂ (0|y, u).

A. 1D lattice

We first apply this formalism to the case of a 1D lattice
[Fig. 1(a)]. We consider the general situation of a biased tracer
which jumps with probability p+ to the right and p− to the left
(s = p+ − p− is the bias), initially at the origin, and in the
presence of a single vacancy. We consider the random walk
performed by the vacancy. It is surrounded by two particles
with exponential clocks with ticking probability χ (t ) = e−t

and its Laplace transform

χ̂ (u) = 1

1 + u
. (6)

Except when it is next to the biased TP, the vacancy thus
performs a symmetric Montroll-Weiss walk [29] with a dis-
tribution of jumping times given by χ (t ). When the TP is
not biased, the walk becomes symmetric for all sites. We first
study this situation before accounting for defective sites next
to the TP.

1. Unbiased TP

Let us call f UB
y (t ) the probability of first passage at the

origin at time t of a vacancy initially at y, assuming that the TP
is not biased (p±1 = 1/2, s = 0). The Montroll-Weiss walk
(in continuous time) of the vacancy is linked to the associ-
ated discrete-time random walk by the formula [Ref. [29],
Eq. (5.46)]

f̂ UB
y (u) = F̂y(χ̂ (u)), (7)

where χ̂ is given by Eq. (6), and F̂y(ξ ) = ∑∞
t=0 ξ t Fy(t ) is the

discrete Laplace transform of the probability of first passage at
the origin of the discrete-time walk starting from y. It is known
to be given [Ref. [29], Eq. (3.135)] by F̂y(ξ ) = α|y| with
α = ξ−1(1 −

√
1 − ξ 2). We obtain the following expression

for the first passage probability that we study:

f̂ UB
y (u) = α|y|, (8)

α = 1 + u −
√

u(2 + u). (9)

One notes that α is a solution of the equation α2 − 2(1 +
u)α + 1 = 0, and this leads to the nontrivial relation

1 + u = 1 + α2

2α
= 1

2
(α + α−1). (10)

Now that we have the expression for an unbiased TP, we turn
to the case of a biased TP.

2. Biased TP

We consider a unique vacancy on the site ν = ±1, next
to a biased TP. Two events can happen: either the TP jumps
on site ν or the particle on site 2ν jumps on site ν. The
first event is governed by an exponential law of rate (inverse
time) pν , while the second is associated with an exponential
clock of rate 1/2. The motion of the vacancy is thus governed
by the exponential law of rate (pν + 1/2), χV (t ) = (pν +
1/2)e−(pν+1/2)t . When such a jump of the vacancy occurs,
there is a probability pν/(pν + 1/2) that it is done in the
direction of the TP, and (1/2)/(pν + 1/2) that it is done in
the opposite direction.

We call fν (t ) the probability of first passage of the vacancy
at the origin, knowing that it starts from site ν. Either it is due
to the first jump of the vacancy at time t , or the vacancy jumps
on site 2ν at time t0 < t , comes back to site ν by a unbiased
random walk at time t0 + t1 and then arrives at the origin. This
leads us to the relation

fν (t ) = pνe−(pν+1/2)t +
∫ t

0
dt0

1

2
e−(pν+1/2)t0

×
∫ t−t0

0
dt1 f UB

1 (t1) fν (t − t0 − t1). (11)

We compute the Laplace transform of this equation and re-
member that f̂ UB

ν (u) = α with α given by Eq. (9). Moreover,
1 + u and α are linked by Eq. (10). We end up with

f̂ν (u) = pν

u + pν + 1/2 − α/2
= α(1 + νs)

1 + νsα
, (12)

where s is the bias. In particular, as expected, if pν = 1/2,
f̂ν (u) = f̂ UB

ν (u) = α.
Finally, considering a vacancy starting from site y and

decomposing over the first visit to site μ = sgn(y), we obtain

fy(t ) =
∫ t

0
dt0 f UB

|y|−1(t0) fμ(t − t0), (13)

and, in the Laplace domain,

f̂y(u) = f̂ UB
|y|−1(u) f̂μ(u) = 1 + μs

1 + μsα
α|y|. (14)

Note that this scaling of the FPT with y ensures the conver-
gence of the infinite sum involved in Eq. (2) Inserting the
first-passage quantities computed in Eq. (14) into the expres-
sion of the propagator with a single vacancy [Eq. (5)], and then
back into the expression of the cumulant-generating function
[Eq. (2)], we obtain, after Laplace inversion:

lim
ρ0→0

ψ (k, t )

ρ0
= te−t [I0(t ) + I1(t )](cos k − 1 + is sin k),

(15)
where I0 and I1 are modified Bessel functions of the first
kind [30]. In the unbiased case s = 0, we retrieve previous
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FIG. 2. Time dependence of the odd (left) and even (right) cu-
mulants of a TP in 1D (ρ0 = 0.02) for different values of the bias
(from blue to red: s = 0, 0.2, 0.5, 0.8, 1). Symbols are the results
from numerical simulations (see Appendix G for details). The black
lines are the predictions from Eqs. (16) and (17); the gray lines are
the asymptotic regimes at short and large times.

results for a symmetric tracer in the SEP [18]. The first im-
plication is that we have the full time dependence of the even
and odd cumulants,

κ̄2n(t ) = te−t [I0(t ) + I1(t )], (16)

κ̄2n+1(t ) = ste−t [I0(t ) + I1(t )]. (17)

At short time, we find that the cumulants obey κ̄2n(t ) ∼ t and
κ̄2n+1(t ) ∼ st . This means in particular that the fluctuations of
the tracer are diffusive, and that the displacement of a biased
TP κ1 is ballistic. At large time, we retrieve the known expres-
sions [14,23,31]: κ̄2n(t ) ∼ √

2t/π and κ̄2n+1(t ) ∼ s
√

2t/π . At
all times, the results from Eqs. (16) and (17) are in perfect
agreement with numerical simulations and shown in Fig. 2.

B. Comb lattice

We further illustrate the generality of our method by con-
sidering the important case of a comb lattice, a lattice made
of a line, called the backbone, on which other lines, called the
teeth, are connected [Fig. 1(b)]. This structure has been widely
used to describe diffusion on percolation clusters [32]. From
now on and for simplicity, we restrict ourselves to the case of
a symmetric tracer constrained to move on the backbone of
the lattice. Relying on the same methodology as before, the
density of first-passage time to the origin of a vacancy starting
from site (y1, y2) reads (Appendix C)

f̂ (0, 0|y1, y2; u) =
{

f̂1( f̂‖)|y1|−1 f̂⊥α|y2|−1 if y2 �= 0,

f̂1( f̂‖)|y1|−1 if y2 = 0,
(18)

where we introduced the shorthand notations f̂μ =
f̂ (0, 0|μ, 0, u), f̂‖ = f̂ (1, 0|2, 0, u), and f̂⊥ = f̂ (1, 0|1, 1, u),
which can all be easily expressed in terms of α. Using the
results from Appendix C in Eq. (5), we finally obtain

lim
ρ0→0

ψ (k, u)

ρ0
= K̂ (u)(cos k − 1),

with K̂ (u) = (2 − α)(α2 − α + 2)/{u(α − 1)

× [u(2 − α) + β − 4α + 6][u(α − 2)

+ β + 2α − 2]}, (19)

where β=√
[(2+u)α − 2u − 2][(3 + u)α − 2u − 4]. While

odd cumulants are null [for symmetry reasons, and as can
be seen from Eq. (19)], all the even cumulants are equal and

FIG. 3. Cumulants of the position of a tracer constrained to move
on the backbone of a comb lattice (left) and on a 2D lattice, where
we rescaled the data with time (right). Vacancy density ρ0 = 0.01.
The symbols correspond to the results from numerical simulations;
the solid line is obtained from the inversion of the expression in
Laplace domain [Eqs. (19) and (30)] using the Stehfest algorithm.
The short-time (dashed line) and long-time (dash-dotted line) asymp-
totics are given in the text.

given by ˆ̄κeven(u) = K̂ (u). We deduce, after Laplace inver-
sion, the short-time and long-time expansions: K (t ) ∼

t→0
t and

K (t ) ∼
t→∞

23/4

3�(3/4) t
3/4. Note that the long-time limit in the case

of a symmetric tracer corresponds to the result we derived in
discrete time [33]. For arbitrary time, we invert the cumulants
numerically using the Stehfest algorithm. Numerical simu-
lations are in perfect agreement with our analytical results
(Fig. 3). Note that it is known that the two limits t → ∞
and ρ0 → 0 do not commute, which mirrors the existence of a
subtle ultimate diffusive regime [33], which we do not intend
to describe here.

V. LOOPED LATTICES

We finally consider the key situation of d-dimensional
lattices. Note that the geometry can be general, each of the
spatial directions of the lattice being either infinite or finite
with periodic boundary conditions, in such a way that the
lattice remains translation-invariant. The CGF of the position
of a symmetric tracer is derived following the same steps as
previously: it is related to the single-vacancy propagators us-
ing Eq. (2), which are themselves related to the FPT densities
of the vacancies through Eq. (4). However, by comparison
with treelike lattices, the expression of the single-vacancy
propagators in terms of the FPT densities is more complicated,
because of the geometry of the system (details are given in
Appendix D). The CGF now reads

lim
ρ0→0

ψ̂ (k, u)

ρ0
= −

d∑
j=1

�̂(k|e j, u) f̂ ′
j (u), (20)

where we defined f ′
ν (t ) = ∑

y�=0 f ∗(0|eν |y; t ) and

�̂(k|e j, u)

= 2(1 − cos q j )

u
− 1

u

∑
μ,ν

(
1 − e−ik·eν

)
× {[I − T]−1}ν,μeik·eμ

∑
ε=±1

e−εiq j f̂ ∗(0|eμ|εe j, u),

(21)
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where I is the identity of size 2d and the matrix T has the
entries Tμ,ν = eik·eν f̂ ∗(0|eν | − eμ; u).

The final step of the calculation consists in determining
the conditional FPT f ∗ in terms of well-known quantities,
namely, the propagators associated with a discrete-time ran-
dom walk on a lattice. The starting point of this calculation
is the following relation, which consists in partitioning the
random walk performed by the vacancy over the time of first
visits to the origin:∫ t

0
dt0

χ (t0)

2d
p(eμ|y, t − t0)

=
∫ t

0
dt0 f ∗(0|eμ|y, t0)�(t − t0)

+
∫ t

0
dt0

∫ t−t0

0
dt1

1

2d
χ (t − t0− t1) f (0|y, t0)p(eμ|0, t1),

(22)

where �(t ) = 1 − ∫ t
0 dt ′ χ (t ′) is the probability that the

walker did not move during a time t . It is then straightforward
to express the conditional FPTs f ∗ in terms of the continuous-
time occupation probabilities p(r|r0, t ) (the probability to find
a vacancy at site r at time t knowing that it started from site
r0). Finally, relying on the relation between the propagators p
and their discrete-time counterpart P(n)

r (the probability to find
the walker at site r after n steps knowing that it started from
the origin) [29], we get the relations (Appendix E)

f̂ ∗(0|eμ|y, u) = χ̂

2d

[
P̂eμ−y(χ̂ ) − P̂y(χ̂ )P̂eμ

(χ̂ )

P̂0(χ̂ (u))

]
, (23)

f̂ ′
μ(u) = 1

2d

χ̂

1 − χ̂

[
1 − P̂eμ

(χ̂ )

P̂0(χ̂ )

]
, (24)

where P̂r(ξ ) = ∑∞
n=0 P(n)

r ξ n is the generating function associ-
ated with the discrete-time propagator P(n)

r .
In summary, the cumulant-generating function of the

tracer position is fully determined in terms of the generating

functions P̂ associated with a discrete-time random walk on
the considered lattice. Indeed, the expression of the CGF given
in Eq. (20) simply involves f ′ and �. The former is related
to the generating functions P̂ through Eq. (24). The latter is
related to the conditional first-passage densities f ∗(0|eμ|y, t )
through Eq. (21), which are themselves related to the gener-
ating functions P̂ through Eq. (23). This result holds for any
translation-invariant lattice, in arbitrary space dimension.

We now consider the example of the infinite 2D lattice.
Making use of the symmetries of this lattice, one can show
that the matrix T(k; u) takes the simple form

T(k; u) =

⎛⎜⎜⎝
eik1 a(u) eik1 a(u) eik1 c(u) eik1 c(u)

e−ik1 a(u) e−ik1 a(u) e−ik1 c(u) e−ik1 c(u)
eik2 c(u) eik2 c(u) eik2 b(u) eik2 a(u)

e−ik2 c(u) e−ik2 c(u) e−ik2 a(u) e−ik2 b(u)

⎞⎟⎟⎠,

(25)
where we introduce shorthand notations for the following
conditional FPT densities, which are determined in terms of
the generating functions P̂ using Eq. (23):

a(u) = f ∗(0|e1|e1, u)

= χ̂ (u)

4

[
P̂(0|0; χ̂ (u)) − P̂(e1|0; χ̂ (u))2

P̂(0|0; χ̂ (u))

]
, (26)

b(u) = f ∗(0|e1| − e1, u)

= χ̂ (u)

4

[
P̂(2e1|0; χ̂ (u)) − P̂(e1|0; χ̂ (u))2

P̂(0|0; χ̂ (u))

]
, (27)

c(u) = f ∗(0|e1|e2, u)

= χ̂ (u)

4

[
P̂(e1 + e2|0; χ̂ (u)) − P̂(e1|0; χ̂ (u))2

P̂(0|0; χ̂ (u))

]
. (28)

Since we are interested only in the cumulants of the position
projected onto one direction of the lattice, we consider only
the dependence of the CGF on the component k1 and set
k2 = 0 for simplicity. Using Eq. (20) yields the following ex-
pression of the CGF in terms of the conditional FPT densities:

lim
ρ0→0

ψ̂ (k1, k2 = 0, u)

ρ0
= 1

2u

χ̂ (u)

1 − χ̂ (u)

(1 − cos k1)(a − b − 1)[(a + b − 1)2 − 4c2]

[2b(a + b − 1) − 4c2] cos k1 + (a + b − 1)(a2 − b2 − 1) − 4(a − b)c2
. (29)

Finally, the CGF is expressed only in terms of four distinct propagators: P̂(0|0; ξ ), P̂(e1|0; ξ ), P̂(2e1|0; ξ ), and P̂(e1 + e2|0; ξ ).
There exist relations between these propagators [20,21], as well as explicit expressions of them in terms of integrals, that
eventually allow a fully explicit determination of the CGF.

As an example, we get the following expression of the second cumulant

lim
ρ0→0

κ̂2(u)

ρ0
= 1

2u

χ̂ (u)

1 − χ̂ (u)

2 − χ̂ (u)g(χ̂ (u))
2 + χ̂ (u)g(χ̂ (u))

, (30)

where g(ξ ) = [P̂0(ξ ) − P2e1 (ξ )]/2 and is given by the integral
quantity [21,29]

g(ξ ) = 1

(2π )2

∫ π

−π

dq1

∫ π

−π

dq2
sin2 q1

1 − ξ

2 (cos q1 + cos q2)
.

(31)

An explicit expression of g(ξ ) in terms of elliptic integrals,
as well as its asymptotic expansions when ξ → 0 and ξ →
1, is given in Appendix F. This yields in particular the

following asymptotics for the second cumulant in Laplace
domain: κ̂2(t ) ∼

t→0
t/2 and κ̂2(t ) ∼

t→∞ t/[2(π − 1)]. The ex-

pression given in Eq. (30) can be inverted back numerically
into the time domain. The output of this inversion, together
with numerical simulations and the short-time and long-time
asymptotics, are represented in Fig. 3. The fluctuations of
the tracer position go from one diffusive regime to another,
and one observes that the long-time diffusion coefficient is
approximately half the short-time diffusion coefficient.
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VI. CONCLUSION

In this article we presented a methodology to compute the
full and exact time dependence of the position of a tracer
particle in a dense lattice gas. We demonstrated the gen-
erality of this method by considering different geometries
(1D, comblike, d-dimensional) and obtaining fully explicit
expressions (either in Laplace domain or in time domain) for
the cumulants of the tracer position. These results unveil the
transient time regimes that precede the long-time asymptotics,
which are usually the only results that can be obtained from
the standard approaches, such as hydrodynamic limits, large
deviations, or discrete-time vacancy mediated diffusion. Al-
though the method presented here holds in the dense limit, our
results constitute a significant step in the description of the full
time dynamics of tracer particles in exclusion processes.

APPENDIX A: FROM A SINGLE VACANCY
TO THE DENSE REGIME

In this Appendix, we derive Eq. (2).
Let us consider a system of finite size N in which all

the sites are occupied except M of them (Fig. 1). We call
these empty sites vacancies, and their fraction is denoted
by ρ0 = M/N = 1 − ρ. The high-density regime of the SEP
corresponds to ρ → 1. Instead of looking at the motion of
the particles, one can equivalently study the motion of the
vacancies. The later perform (a priori correlated) random
walks on the lattice.

The tracer is initially at the origin, and its displacement at
time t is x(t ). This displacement can be said to be generated
by the random walks of the vacancies: the tracer moves by
exchanging its position with that of a neighboring vacancy.
We number the vacancies and call x j (t ) the displacement of
the TP generated by the jth vacancy. We have x(t ) = x1(t ) +
· · · + xM (t ).

The initial positions of the vacancies are called y j .
P(x|y1, . . . , yM, t ) is the probability of a displacement x at
time t knowing the initial positions of the vacancies. Similarly,
P (x1, . . . , xM |y1, . . . , yM, t ) is the probability that up to time t
vacancies induced displacements {x j} of the TP knowing their
initial positions (see Fig. 1). By definition,

P(x|{y j}, t )

=
∑

y1,...,yM

δx,x1+···+xMP (x1, . . . , xM |y1, . . . , yM, t ). (A1)

Now, in the high-density limit (ρ0 = M/N → 0), we as-
sume that the vacancies perform independent random walks
and interact independently with the TP. We neglect an event of
order O(ρ2

0 ) in which two vacancies interact with each other,
compared to events of order O(ρ0) in which one vacancy
interacts with the TP. This gives exact results at linear order in
the density of vacancies ρ0. We call p1(x|y, t ) the probability
that, in a system with a single vacancy initially at y, the TP
has displacement x at time t . Our assumption leads to

P (x1, . . . , xM |y1, . . . , yM, t ) ∼
ρ0→0

M∏
j=1

p1(x j |y j, t ) (A2)

with ρ0 = 1 − ρ. Equation (A1) now gives

P(x|y1, . . . , yM, t ) ∼
ρ0→0

∑
x1,...,xM

δx,x1+···+xM

×
M∏

j=1

p1(x j |y j, t ). (A3)

We define the Fourier transform f̃ (k) = ∑∞
x=−∞ eik·x f (x) and

obtain

P̃(k|y1, . . . , yM, t ) ∼
ρ0→0

M∏
j=1

p̃1(k|y j, t ). (A4)

We consider an initial condition in which the vacancies have
equal probability to be on any site (except the origin). This
corresponds to an equilibrated system and is known in the
literature as annealed initial conditions. It can be opposed
to the case of an initial frozen repartition of vacancies on
the lattice, usually referred to as quenched initial conditions.
Note that the choice of the type of initial conditions, annealed
or quenched, can have a dramatic effect on the statistics of
the position of the tracer, as studied recently in 1D geome-
tries [16,34–36].

The cumulant-generating function of x(t ) is the logarithm
of the average of P̃(k|y1, . . . , yM, t ),

ψ (k, t ) = ln P̃(k, t ), (A5)

where

P̃(k, t ) ≡ 1

(N − 1)M

∑
y1,...,yM �=0

P̃(k|y1, . . . , yM, t ). (A6)

In the limit ρ0 → 0, we obtain

P̃(k, t ) ∼
ρ0→0

[
1

N − 1

∑
y�=0

p̃1(k|y, t )

]M

(A7)

=
[

1 + 1

N − 1

∑
y�=0

[p̃1(k|y, t ) − 1]

]M

. (A8)

We consider the large-size limit M, N → ∞ with ρ0 =
M/N = 1 − ρ constant. We obtain an expression for the prop-
agator P̃(k, t ) in the high-density limit:

P̃(k, t ) ∼ exp

(
ρ0

∑
y�=0

[p̃1(k|y, t ) − 1)]

)
, (A9)

and for the cumulant-generating function:

lim
ρ0→0

ψ (k, t )

ρ0
=

∑
y�=0

[ p̃1(k|y, t ) − 1], (A10)

which coincides with Eq. (2).

APPENDIX B: SINGLE-VACANCY PROPAGATOR
ON TREELIKE LATTICES

In this Appendix, we derive Eq. (5).
We consider the case of treelike lattices. In those specific

geometries, when there is one vacancy on the lattice starting
from site y [y = y1 in one dimension or y = (y1, y2) on a
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comb], the tracer can reach only two sites: 0 and ±e1 (de-
pending on whether the vacancy is initially at the right or at
the left of the tracer). This implies f ∗(0|eμ|y, t ) = f (0|y, t ) if
eμ belongs to the shortest path from y to 0 and 0 otherwise.
Equation (3) is then rewritten

p1(x|y, t ) = δy,0

(
1 −

∫ t

0
dτ f (0|y, t )

)
+

∫ t

0
dτ p1(x − μ| − eμ, t − τ ) f (0|y, τ ),

(B1)

where μ ≡ sgn(y1). Using the same simplification, Eq. (4)
now reads

p1(y|eν, t ) =
∞∑

n=0

δy,ν[1−(−1)n+1]

×
∫ ∞

0
dt1 . . . dtn

∫ ∞

0
dτδ

(
t −

n∑
i=1

ti − τ

)
× [1 − f (0|(−1)neν, τ )] f (0|(−1)n−1eν, τ )

× · · · f (0| − eν, t2) f (0|eν, t1). (B2)

We define the Fourier transform in space and Laplace trans-
form in time by

ˆ̃p1(k|y, u) ≡
∞∑

Y =−∞
eikx

∫ ∞

0
dt e−ut p1(x|y, t ). (B3)

Applying it to Eqs. (B1) and (B2), we obtain

ˆ̃p1(k|y, u) = 1

u
+

[
ˆ̃p1(k| − eμ, u)eiμk − 1

u

]
f̂ (0|y, u),

ˆ̃p1(k|eν, u) = 1

u

[
1 − f̂ν (u)

] + eiνk f̂ν (u)
[
1 − f̂−ν (u)

]
1 − f̂1(u) f̂−1(u)

,

(B4)

where we introduce the shorthand notation f̂ν (u) =
f (0|eν, u). We combine the two equations and obtain the
propagator of the displacement of the TP in term of the first
passage probabilities of the vacancy,

ˆ̃p1(k|y, u) = 1

u

[
1 + (eiμk − 1)

1 − f̂−μ(u)

1 − f̂1(u) f̂−1(u)
f̂ (0|y, u)

]
,

(B5)
which corresponds to Eq. (5).

APPENDIX C: FPT ON A COMB

In this Appendix, we derive Eq. (19).
We consider the comb lattice represented in Fig. 1(b). The

backbone of the lattice is the x1 axis, and to each node of
the backbone a 1D lattice is connected and extends infinitely
in directions ±x2 (called teeth). Bath particles jump to each
neighboring site with rate 1/4 when they are on the backbone,
and with rate 1/2 when they are on the teeth. The tracer is
constrained to move on the backbone and therefore jumps
with rate 1/2 to the right or to the left. Its position is denoted
by x(t ), and the associated generating function is ψ (k, t ) =
ln〈eikx(t )〉.

Starting from Eq. (2), we write

lim
ρ→1

ψ (k, t )

1 − ρ
=

∑
(y1,y2 )�=(0,0)

[p̃y1,y2 (k, t ) − 1], (C1)

where the sum runs over all the sites different from the origin
(all possible starting points of the vacancies). The quantity
py1,y2 (x, t ) is the probability that the tracer reaches site x at
time t due to its interactions with a single vacancy that starts
from site (y1, y2). Following the derivation in Appendix B, the
Fourier-Laplace transform of the single-vacancy propagator is
related to the FPT densities f̂ through [Eq. (5)]

ˆ̃py1,y2
(k, u)

= 1

u

[
1 + (eiμk − 1)

1 − f̂−μ(u)

1 − f̂1(u) f̂−1(u)
f̂ (0, 0|y1, y2; u)

]
= 1

u

[
1 + eiμk − 1

1 + f̂1(u)
f̂ (0, 0|y1, y2; u)

]
, (C2)

where f (0, 0|y1, y2, t ) is the probability for a vacancy to reach
the origin for the first time at time t starting from site (y1, y2).
We also define f̂μ(u) = f̂ (0, 0|μ, 0, u). We used the symme-
try relation f̂1 = f̂−1 to obtain the second equality in Eq. (C2).

Because of the treelike structure of the lattice, there is
a single path linking site (y1, y2) to the origin (0,0). This
property ensures the relation [37]

f (0, 0|y1, y2; t )

=
∫ t

0
dτ f (0, 0|y′

1, y′
2, τ ) f (y′

1, y′
2|y1, y2, t − τ ), (C3)

or, in Laplace space,

f̂ (0, 0|y1, y2; u) = f̂ (0, 0|y′
1, y′

2, u) f̂ (y′
1, y′

2|y1, y2, u). (C4)

This relation holds for any site (y′
1, y′

2) belonging to the
bath linking (y1, y2) and (0,0). Using the path decomposition
(y1, y2) → (y1, sgn(y2)) → (y1, 0) → (sgn(y1), 0) →
(0, 0), we write

f̂ (0, 0|y1, y2; u)

=
{

f̂1(u) f̂‖(u)|y1|−1 f̂⊥(u)[ f̂ (1, 1|1, 2, u)]|y2|−1 if y2 �= 0,

f̂1(u) f̂‖(u)|y1|−1 if y2 = 0.

(C5)

For simplicity, we introduce the following notation:

f̂ (1, 0|2, 0, u) = f̂‖ (C6)

f̂ (1, 0|1, 1, u) = f̂⊥. (C7)

We note that f̂ (1, 1|2, 1, u), which denotes the FPT density
between two neighboring sites of a tooth of the comb is
nothing but the FPT density between two neighboring sites
of a 1D lattice, and is given by

f̂ (1, 1|2, 1, u) = α = 1 + u −
√

u(2 + u). (C8)

Finally, using the expressions of the first-passage densities
[Eq. (C5)], the single-vacancy propagator [Eq. (C2)], and the
cumulant-generating function [Eq. (C1)] yields the following

054139-7



PONCET, GRABSCH, BÉNICHOU, AND ILLIEN PHYSICAL REVIEW E 105, 054139 (2022)

expression of the latter in Laplace domain:

lim
ρ→1

ψ (k, u)

1 − ρ
= 1

u

1

1 + f̂1(u)

×
∑
ε=±1

∞∑
y2=−∞

∞∑
y1=1

(eiεk − 1) f̂ (0, 0|εy1, y2; u)

(C9)

and eventually

lim
ρ→1

ψ (k, u)

1 − ρ
= 1

u

1

1 − f̂‖(u)

×
(

1 + 2 f̂⊥(u)

1 − α(u)

)
f̂1(u)

1 + f̂1(u)
2(cos k − 1).

(C10)

The last step of the calculation is to compute the quantities
f̂±1, f̂‖, and f̂⊥.

1. Calculation of f̂1

Here we follow the arguments that lead to the derivation
of Eq. (11). Considering a vacancy initially located at site
(±1, 0) (on the backbone and right next to the tracer) and
partitioning over the first jump performed by the vacancy,
which can be directed either towards the tracer (with rate 1/2)
on the backbone and in the direction opposite to that of the
tracer (with rate 1/4) or sideways on the tooth of the comb
(with rate 2 × 1/2), one writes

f1(t ) = 1

2
e−7t/4

+
∫ t

0
dt0

1

4
e−7t/4

∫ t−t0

0
dt1 fμ(t − t0 − t1) f UB

‖ (t1)

+ 2
∫ t

0
dt0

1

2
e−7t/4

∫ t−t0

0
dt1 fμ(t − t0 − t1) f UB

‖ (t1),

(C11)

where f‖ is defined in Eq. (C6). Taking the Laplace transform
of this equation, one gets

f̂1(u) = 1/2

u + 7
4 − 1

4 f̂‖ − f̂⊥
. (C12)

2. Calculation of f̂‖

In order to calculate f̂‖ = f̂ (1, 0|2, 0, u), we consider a
vacancy starting from site (2,0) and, partitioning over the first
jump performed by the vacancy which can be either on the
backbone (with rate 2 × 1/4) or sideways on the tooth of the
comb (with rate 2 × 1/2), we get

f‖(t ) = 1

4
e−3t/2

+
∫ t

0
dt0

1

4
e−3t/2

∫ t−t0

0
dt1 f‖(t − t0 − t1) f‖(t1)

+ 2
∫ t

0
dt0

1

2
e−3t/2

∫ t−t0

0
dt1 f‖(t − t0 − t1) f⊥(t1).

(C13)

In Laplace space, one gets the equation satisfied by f̂‖(u):

f̂‖(u)2 − 4

[
u + 3

2
− f̂⊥(u)

]
f̂‖(u) + 1 = 0. (C14)

Choosing the solution satisfying the short-time condition
limu→∞ f̂‖(u) = 0, we get

f̂‖(u) = 2

(
u + 3

2
− f̂⊥(u)

)
−

√
4

(
u + 3

2
− f̂⊥(u)

)2

− 1.

(C15)

3. Calculation of f̂⊥

Finally, in order to calculate f̂⊥ = f̂ (1, 0|1, 1, u), we con-
sider a vacancy starting from site (1,1) and, partitioning over
the first jump performed by the vacancy which can be either
away from the backbone (with rate 1/2) or towards the back-
bone (with rate 1/4), we get

f⊥(t ) = 1

4
e−3t/4

+
∫ t

0
dt0

1

2
e−3t/4

∫ t−t0

0
dt1 f⊥(t − t0 − t1) f1D(t1),

(C16)

where f1D is the FPT density of a vacancy between two
neighboring sites of a one-dimensional lattice [its Laplace
transform is denoted by α(u) in the main text]. In Laplace
space, we get

f̂⊥ = 1

4u + 3 − 2α(u)
= α

2 − α
. (C17)

Equation (C10), together with the expressions of f̂‖, f̂‖, and
f̂1 above, leads after some algebra to Eq. (19).

APPENDIX D: LOOPED LATTICES: EXPRESSION
OF THE CGF IN TERMS OF THE CONDITIONAL FPT f ∗

In this Appendix, we derive Eq. (20).
We now turn to the case of d-dimensional lattices. We

start from Eq. (A8), which relates the propagator of the tracer
position to the single-vacancy propagators in Fourier space
p̃1(k|y, t ):

P̃(k, t ) �
[

1 + 1

N − 1

∑
y�=0

[ p̃1(k|y, t ) − 1]

]M

. (D1)

Using the Fourier transform of Eq. (26), which relate the
single-vacancy propagators of the random walk of a tracer
starting from an arbitrary point y and from a site located at
the vicinity of the tracer eν , we find the relation

p̃1(k|y, t ) = 1 −
∫ t

0
dτ f (0|y, t )

+
∑

ν

∫ t

0
dτ f ∗(0|eν |y; τ )eiqν p̃1(k| − eν ; t − τ ).

(D2)
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Replacing p̃1(k|y, t ) in Eq. (D1) by this expression, and using
the relation f (0|y; t ) = ∑

ν f ∗(0|eν |y; t ), one gets

P̃(k, t ) =
[

1 − 1

N − 1

∑
ν

∫ t

0
dτ [1 − eiqν p̃1(k|eν ;t − τ )]

×
∑
y�=0

f ∗(0|eν |y;τ )

]M

. (D3)

Using the equivalence between directions ±eν , defining (for
j = 1, . . . , d)

�(k|e j, t ) = 2 − eiq j p̃1(k| − e j ; t ) − e−iq j p̃1(k|e j ; t ), (D4)

and taking the thermodynamics limit (M, N → ∞ with fixed
ρ = M/N), one gets

P̃(k, t ) = exp

[
−ρ

d∑
j=1

∫ t

0
dτ �(k|e j, t − τ ) f ′

ν (τ )

]
, (D5)

where we defined

f ′
ν (t ) =

∑
y�=0

f ∗(0|eν |y; t ). (D6)

In the Laplace domain, the CGF then reads

lim
ρ0→0

ψ̂ (k, u)

ρ0
= −

d∑
j=1

�̂(k|e j, u) f̂ ′
j (u). (D7)

The last step of the calculation consists in express-
ing �̂(k|e j, u) in terms of the conditional FPT densities
f ∗(0|eν |eμ, t ). Taking the Fourier-Laplace transform of
Eq. (4), we get

ˆ̃p1(k|y; u) = 1

u

(
1 +

∑
μ

Vμ(k; u) f ∗(0|eμ|y; u)

)
, (D8)

where we defined

Vμ(k; u) ≡
∑

ν

[1 − e−ik·eν ]{[I − T(k; u)]−1}ν,μeik·eμ . (D9)

I is the identity of size 2d , and the matrix T(k; u) has the
entries [T(k; u)]μ,ν defined by

[T(k; u)]ν,μ = eik·eν f̂ ∗(0|eν | − eμ; u)

=
∫ ∞

0
dt f ∗

t (0|eν | − eμ, t )e−ut . (D10)

Taking the Laplace transform of Eq. (D4) and using the ex-
pression of ˆ̃p1 [Eq. (D8)] yields

�̂(k|e j, u) = 2(1 − cos q j )

u

− 1

u

∑
μ

Vμ(k, u)
∑
ε=±1

eiεq j f̂ ∗(0|eμ| − εe j, u).

(D11)

We then have an expression of the CGF in terms of the condi-
tional first-passage densities f ∗ [Eq. (20)].

APPENDIX E: CONDITIONAL FPT DENSITIES f ∗

ON A LOOPED LATTICE

In this Appendix, we derive Eqs. (23) and (24).
Taking the Laplace transform of Eq. (22), using the re-

newal equation f̂ (y|0, u) = p̂(y|0, u)/p̂(0|0, u) (valid for y �=
0 [29]), and using �̂(u) = (1 − χ̂ (u))/u, we get

f̂ ∗(0|eμ|y, u) = 1

2d

uχ̂ (u)

1 − χ̂ (u)

[
p̂(eμ − y|0, u)

− p̂(y|0, u) p̂(eμ|0, u)

p̂(0|0, u)

]
, (E1)

where p(r|r0; t ) is the propagator associated to a simple ran-
dom walk on the considered lattice (the probability to find
a walker at site r at time t knowing that it started from site
r0 at time t = 0), and we used the translational invariance of
the lattice [i.e., p(r|r0; t ) = p(r − r0|0; t ) for any two sites r
and r0].

The Laplace transform of the continuous-time propaga-
tor can be related to the generating function P̂(r|r0; ξ ) =∑∞

n=0 Pn(r|r0)ξ n associated with the discrete-time propagator
Pn(r|r0) (the probability to find the walker at site r after n steps
knowing that it started from site r0) through the relation [29]

p̂(r|r0, u) = 1 − χ̂ (u)

u
P̂(r|r0; χ̂ (u)), (E2)

which yields

f̂ ∗(0|eμ|y, u) = χ̂ (u)

2d

[
P̂(eμ − y|0; χ̂ (u))

− P̂(y|0; χ̂ (u))P̂(eμ|0; χ̂ (u))

P̂(0|0; χ̂ (u))

]
, (E3)

which coincides with Eq. (23).
We finally compute f̂ ′

μ(u), defined in Eq. (D6). To this end,
we must use the normalization condition

∑
r Pn(r|r0) = 1,

which reads, in terms of the generating function associated
with Pn, ∑

r

P̂(r|r0, ξ ) = 1

1 − ξ
. (E4)

With Eq. (23), we get the simple expression

f̂ ′
μ(u) = 1

2d

χ̂ (u)

1 − χ̂ (u)

[
1 − P̂(eμ|0, χ̂ (u))

P̂(0|0, χ̂ (u))

]
, (E5)

which is Eq. (24).

APPENDIX F: EXPLICIT EXPRESSION OF g(ξ) IN TERMS
OF ELLIPTIC INTEGRALS

The function g is defined in Eq. (31) as

g(ξ ) ≡ 1

2
[P̂(0|0; ξ ) − P̂(2e1|0; ξ )] (F1)

= 1

(2π )2

∫ π

−π

dq1

∫ π

−π

dq2
sin2 q1

1 − ξ

2 (cos q1 + cos q2)
.

(F2)
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can be expressed in terms of elliptic integrals:

g(ξ ) = 4

ξ 2
+ 4

πξ 2
√

1 − ξ 2

[
(1 − ξ )K

(
iξ√

1 − ξ 2

)
−(1 − ξ 2)E

(
iξ√

1 − ξ 2

)
− 2�

(
ξ

ξ − 1
,

iξ√
1 − ξ 2

)]
,

(F3)

where we use the following expressions for the elliptic inte-
grals:

K (k) =
∫ 1

0

dt√
1 − t2

√
1 − k2t2

, (F4)

E (k) =
∫ 1

0
dt

√
1 − k2t2

√
1 − t2

, (F5)

�(ν, k) =
∫ 1

0

dt

(1 − νt2)
√

1 − t2
√

1 − k2t2
. (F6)

The asymptotic expansions of g(ξ ) read

g(ξ ) =
ξ→1

(
2 − 4

π

) + 2
π

(1 − ξ ) ln(1 − ξ ) + O(1 − ξ ),

(F7)

g(ξ ) =
ξ→0

1

2
+ 3

32
ξ 2 + O(ξ 3). (F8)

APPENDIX G: NUMERICAL SIMULATIONS

The simulations of the SEP are performed on a periodic
ring of size N , with M = ρN particles at average density ρ. In
Fig. 2, N = 2000 and M = 1960 (ρ0 = 0.02). The particles
are initially placed uniformly at random. The jumps of the
particles are implemented as follow. One first picks a particle
uniformly at random. Then a direction (left or right) is chosen
according to probabilities 1/2 and 1/2 for bath particles, and
p1 and p−1 = 1 − p1 for the tracer. If the chosen particle has

FIG. 4. (a) Symmetric exclusion process (SEP) with a biased TP.
The bath particles jump on neighboring site with rate 1/2, whereas
the jump rates of the TP are p±1 = (1 ± s)/2 where s is the bias.
(b) Tracer diffusing on a crowded comb lattice. Particles jump on
neighboring sites with rate 1/4 (resp. 1/2) when they are on the
backbone (resp. the teeth) of the comb. The tracer is constrained
to move on the backbone of the lattice. (c) Tracer diffusion on a
crowded 2D lattice. The bath particles and the tracer jump on each
neighboring site with rate 1/4.

no neighbor in that direction, the jump is performed, otherwise
it is rejected. In both cases, the time of the simulation is
incremented by a random number picked from an exponential
distribution of rate N . We keep track of the particle initially
at the origin (the tracer) and compute the moments of its
displacement, averaging over 2 × 106 simulations.

The simulations of the comb and of the 2D lattice (Fig. 3)
are performed in a similar way. Starting from a uniform ran-
dom configuration, particles are chosen uniformly at random
and try to jump to neighboring sites with probabilities de-
scribed in Fig. 4. Hard-core exclusion is enforced. In both
cases (comb and 2D lattice), we use a periodic grid of size
100 × 100 with 9900 particles (ρ0 = 0.01) and average over
4 × 106 simulations.
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