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Abstract. We study the dynamics of a biased intruder (BI) pulled by a constant
force F through a dense molecular crowding environment modelled as a lattice
gas of unbiased, randomly moving hard-core particles. Going beyond the usual
analysis of the force–velocity relation (FVR), we focus on the behaviour of the
higher moments of the BI vector displacement Rn at time n (the FVR is just
the first moment) in the leading order in the density ρ0 of vacancies (O(ρ0)). We
prove that in infinite 2D systems the probability distribution P (Rn) converges
to a Gaussian as n → ∞, despite the fact that the BI drives the system into
a non-equilibrium steady state with a non-homogeneous spatial distribution of
the lattice gas particles. We show that in infinite 2D systems the variance
σ2
x of the distribution P (Rn) along the direction of the bias grows (weakly)

super-diffusively: σ2
x ∼ ν1 n ln(n). In the direction perpendicular to the bias, the

variance σ2
y ∼ ν2 n. The coefficients ν1 and ν2, which we determine exactly for

arbitrary bias in O(ρ0), mirror the interplay between the bias, vacancy-controlled
transport and the back-flow effects of the medium on the BI. We observe that
ν1 ∼ |F|2 for small bias, which signifies that the super-diffusive behaviour emerges
beyond the linear-response approximation. We present analytical arguments
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showing that such an anomalous, field-induced broadening of fluctuations is
dramatically enhanced in confined, quasi-1D geometries—infinite 2D stripes and
3D capillaries. We argue that in such systems, σ2

x exhibits a strongly super-
diffusive behaviour, σ2

x ∼ n3/2. Monte Carlo simulations confirm our analytical
results.

Keywords: driven diffusive systems (theory), exact results, stochastic particle
dynamics (theory), microfluidics
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1. Introduction

A biased intruder (BI)—a particle which performs a random motion biased in one
direction in a quiescent bath of other particles, which also move randomly but without
any preferential direction—drives the spatial distribution out of equilibrium. The bath
particles accumulate, creating a ‘traffic jam’ in front of the BI, and are depleted behind
it. The BI can be, e.g., a charge carrier subject to an electric field or a colloid moved
with an optical tweezer. The bath particles may be, e.g., colloids dispersed in a solvent or
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entrapped by a liquid–liquid interface, or adatoms performing activated hopping motion
among the adsorption sites on a solid surface.

Microstructural changes of the (otherwise homogeneous) medium have been observed
experimentally. In particular, experiments revealed such changes in active microrheological
measurements of the drag force exerted on a single colloid driven through a λ-DNA
solution [1], for an intruder driven by a constant-velocity optical trap in a monodisperse
quasi-two-dimensional colloid suspension [2] or for an intruder dragged through a
monolayer of vibrated grains [3]. Formation of a non-homogeneous and non-equilibrium
distribution of the bath particles has also been evidenced by Brownian dynamics
simulations of a driven colloid in λ-DNA solutions [1, 4], in molecular dynamics simulations
of a three-dimensional Lennard-Jones binary mixture [5] and in colloidal crystals [6].
In the latter case, it was shown that a large enough BI generates a stress sufficient to
produce defects, which remain localized near the BI and affect the frictional drag force.
The microstructural changes of the medium not only enhance the drag force exerted on
the BI, but also induce effective interactions between the BIs, when more than one BI is
present [7]–[11].

Microstructural changes of the medium manifest themselves via peculiar forms of the
so-called force–velocity relation (FVR), i.e., the dependence of the terminal BI velocity
v on the magnitude of the pulling force F . Such FVRs have been extensively studied
in the past for various complex fluids such as glasses [12], colloidal systems [13, 14] and
also granular media [3], [15]–[18]. The measured FVRs display several regimes with a
linear Stokesian behaviour for sufficiently small forces or small packing fractions, and a
non-linear behaviour close to the glass and/or jamming transition. Some theoretical results
on out-of-equilibrium response functions and generalized fluctuation-dissipation relations
for granular intruders can be found in the recent work [19]. We also note parenthetically
that similar effects were predicted, in general, for driven inclusions which locally affect the
fluctuations of thermally excited fields, inducing thermal Casimir drag forces acting on
the inclusions and, hence, resulting in very special forms of the FVR (see, e.g., [20]–[22]
and references therein).

Microstructural changes of the medium produced by a BI were extensively studied
analytically for quiescent baths modelled as hard-core lattice gases with symmetric simple
exclusion dynamics [23]–[29]. In this case, the intruder is absolutely identical to the bath
particles, except that it is biased and thus has a preferential direction of motion. In
this regard, one studies here the dynamics of an asymmetric simple exclusion process
(ASEP) [30] in a d-dimensional sea of symmetric simple exclusion processes (SEPs) [31].
From a different perspective, one considers a theoretical model in a standard, probe-based,
constant-forcing microrheological set-up. Despite some evident simplifications made in
such a type of modelling, as well as in its subsequent generalizations over the lattice gases
with kinetic constraints (i.e., it is assumed that the interactions are merely hard-core ones,
with no rotational diffusion and no momentum transfer, the particles are constrained to
move on a lattice, and so on), it captures quite well several essential qualitative features
and reproduces, in some cases, a cooperative many-particle behaviour which is observed
in realistic physical systems [31]–[42]. Some other examples that lattice gas modelling
successfully explains include, e.g., the experimentally observed spreading behaviour of the
so-called precursor films [43, 44], wetting/dewetting transitions of monolayers confined in
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slit-like pores [45] and knot-limited polymer ejection from a capsid [46], to name just a
few.

It was realized that in one-dimensional (1D) symmetric, hard-core lattice gases, i.e., in
the so-called single-file systems, the size of the jammed region in front of the BI grows in
proportion to the distance travelled. This means that the jamming-induced contribution
to the frictional drag force exerted by the medium on the BI exhibits an unbounded
growth with time n, so its mean displacement grows sub-linearly, in proportion to

√
n.

In other words, the BI mean velocity vn vanishes, vn ∝ 1/
√
n [23]–[25]. This ensures the

validity of the Einstein relation between the mobility and the diffusivity for anomalous
tracer diffusion in 1D hard-core lattice gases [24]–[26], [47, 48], for which the variance
σ2
x of the BI displacement in the absence of the bias grows sub-diffusively, according to

the celebrated asymptotic law σ2
x ∼
√
n [49]–[54]. Note, as well, that in the absence of

an external pulling force, the distribution of the displacement of the (unbiased) intruder
converges to a Gaussian [54]. The σ2

x ∼
√
n law has also been observed experimentally

(see, e.g., [55, 56]).
In higher dimensions the situation is qualitatively different: after some transient period

of time, the BI starts to move ballistically, so its mean velocity approaches a terminal value
v, which depends on the particle density ρ and on the value of the applied force. The FVR
displays a linear, Stokesian behaviour for sufficiently small values of the pulling force, and
the proportionality factor can be identified as an effective friction coefficient. The latter
comprises a mean-field contribution (corresponding to perfectly mixed lattice gases) and
an essentially cooperative contribution (associated with the microstructural changes of
the medium). Furthermore, for biased dynamics in lattice gases the force–velocity curve
saturates4, i.e., the velocity attains some constant limiting value, when the force tends to
infinity, so the intruder performs a unidirectional random motion [26, 28, 29]. In turn, the
bath particle spatial distribution attains, in the frame of reference moving with the BI, a
non-equilibrium stationary form characterized by a jammed region in front of the BI and
a depleted region in its wake (see figure 1) [27]–[29]. Strikingly, behind the BI the bath
particle density approaches the mean value ρ as a power law in the distance x: 1/x3/2 and
ln(x)/x2 in 2D and 3D [27]–[29]. This signifies that the medium ‘remembers’ the passage
of the BI on anomalously large temporal and spatial scales.

Given such an anisotropy in the bath particle spatial distribution and, in general,
a non-equilibrium situation, quite a legitimate question to be addressed is that of a
behaviour beyond the FVR: namely, of the time evolution of the higher moments of the
BI displacement Rn at time n and, ideally, of the whole distribution P (Rn). Recall that
the FVR is just the first moment of this distribution and, hence, does not provide all the
wealth of information about the BI dynamics of course.

It has been recently discovered that the behaviour of the variance σ2
x of Rn along

the direction of the applied bias (say, the x-direction) is, in fact, non-trivial and even
counter-intuitive [57]–[61]. Dealing with such dense molecular crowding environments,
one would expect to encounter a diffusive, or even a sub-diffusive behaviour. In contrast,
it has been realized that the variance σ2

x along the direction of the bias exhibits a super-
diffusive growth with time [57]–[61], in a striking contrast to the behaviour of either an

4 Note that such a saturation stems from the definition of the microscopic dynamics of the intruder, in which the
external bias enters via appropriately defined transition probabilities, normalized to unity. It may not be present
in systems with other dynamic rules.
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Figure 1. A snapshot of the bath particle density profile ρ(x, y) relative to the
mean density ρ (numbers near the contour curves) in a 2D hard-core lattice gas
in the frame of reference moving with the BI (black square).

isolated biased Brownian particle or that of an unbiased diffusion in dense molecular
crowding environments. In recent work [57]–[59], such an accelerated growth of σ2

x has
been observed in molecular dynamics simulations of an intruder pulled by an external
constant force through a glass-forming binary Yukawa fluid confined in an elongated (by
the factor of 8 in the force direction) rectangular capillary 8L,L, L, where L = 13.3a, a
being the molecular diameter. It was realized that σ2

x grows with time n as σ2
x ∼ nξ with

ξ ≈ 1.45 [57, 58] or even ξ ≈ 1.5 [59], with no apparent saturation of growth or crossover to
diffusive behaviour at longer times. The variance in the direction perpendicular to the bias
was shown to grow diffusively in the long-time limit. Furthermore, in a recent work [61], a
non-linear transient regime5, separating the initial and the ultimate diffusive behaviours
with two different diffusion coefficients, has been observed in MD simulations of a binary
mixture of Lennard-Jones particles, one of which was pulled by an external force, in a less
elongated three-dimensional rectangular capillary with the aspect ratio 3:1:16.

Noticing a highly intermittent character of individual BI trajectories, such that the BI
is localized for some time in a cage formed by the surrounding particles before it quickly
moves to another cage, Winter et al [57, 58] argued that such an anomalous broadening
of fluctuations in the dynamics of the pulled particle can be qualitatively understood in
terms of a random trap model [62], since it is reminiscent of a directed walk among traps
with a broad release time distribution. The authors, however, did not elaborate on this
point and did not support it with any explicit calculation. Moreover, they observed in
their numerical simulations that the release time, τ , distribution Ψ(τ) can be well-fitted
by a stretched-exponential function, Ψ(τ) ∼ exp(−

√
τ), which seems, as a matter of fact,

to be incompatible with their own claim, since such a distribution is not broad, possesses
moments of arbitrary order and, hence, cannot be a cause of any anomalous behaviour. It
was shown in [59] that a conventional mode-coupling-theory approach cannot reproduce
such a super-diffusive behaviour either. A continuous-time random walk description (for

5 See section 7 for a further discussion.
6 We thank A Heuer for this clarification which was missing in the original [61].
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general literature on the CTRW, see, e.g., [63]–[65]) of the dynamics of a biased intruder
has been developed in [61], and the authors made a very strong claim that within a CTRW
model an accelerated growth may take place at intermediate times, but ultimately it should
cross over to a diffusive behaviour7.

In our recent short paper [60], we studied analytically a BI dynamics in a molecular
crowding environment modelled as a dense two-dimensional lattice gas of randomly
moving hard-core particles, focusing on the question of how an asymmetry in the spatial
distribution of the bath particles and, in general, a non-equilibrium situation affect the
long-time evolution of the distribution P (Rn). We have shown, as a by-product of this
analysis, that in the leading order in the density ρ0 of vacancies, the variance of the
BI displacement in the direction parallel to the bias exhibits an asymptotic (weakly)
super-diffusive growth σ2

x ∼ n ln(n) in infinite two-dimensional systems, and numerically
observed a strongly super-diffusive growth, σ2

x ∼ n3/2, for infinite quasi-1D geometries—
two-dimensional stripes and three-dimensional rectangular capillaries, which seems to be
in a good agreement with the results of simulations in [57] for elongated 3D systems.

Taken together, the results of [57]–[59], [61] and of our work [60] hint at a possibility of
encountering a novel phenomenon—a field-induced super-diffusive fluctuation broadening
in the dynamics of a biased intruder moving in a quiescent medium, which goes beyond the
usual FVR as well as such standard fluctuation-dissipation relations as the Green–Kubo or
generalized Einstein relations [66, 67]. Some conflicting trends in the observed behaviour,
however, call for a more thorough theoretical, numerical and experimental analysis with
the goal of elucidating the physical mechanisms underlying such a phenomenon. Here we
present an analytical analysis of this phenomenon in the case of a biased dynamics in
lattice gases, which emphasizes the vacancy-controlled8 mechanism of the super-diffusive
fluctuation broadening, and the crucial importance of the effective spatial dimensionality
and of the emerging long-range temporal correlations in the BI dynamics.

The purpose of the present paper is to give a complete and comprehensive discussion of
a BI dynamics in very dense two-dimensional and several quasi-one-dimensional molecular
crowding environments modelled as lattice gases, comprising hard-core particles which
move randomly without any preferential direction. First of all, extending our succinct
presentation in [60], we focus on the behaviour on infinite 2D lattices in the leading order in
the density ρ0 of vacancies (henceforth denoted as O(ρ0)). We determine exactly, in O(ρ0)
and for arbitrary bias F , the long-time behaviour of the variances, the skewness and the
kurtoses of the probability distribution function P (Rn) of the BI vector displacement Rn

at time n. We set out to show that the variance σ2
x along the direction of the bias exhibits

a weakly super-diffusive growth, σ2
x ∼ ν1 n ln(n), while the variance σ2

y in the direction

perpendicular to the bias shows a usual diffusive growth, σ2
y ∼ ν2 n. The coefficients ν1 and

ν2, which result from the interplay between the bias, the vacancy-controlled transport, and
the back-flow effects of the medium on the BI, are determined exactly, for arbitrary bias,
in O(ρ0). We realize that, remarkably, ν1 ∼ F 2 for small pulling forces, which signifies that
such a super-diffusive behaviour emerges beyond (and thus cannot be obtained within) the

7 See, however, section 7 for a critical assessment of this claim and further discussion.
8 Note that for the off-lattice systems studied in [57]–[59], [61], such a vacancy-facilitated motion of particles may
take place only in a certain range of temperatures and densities, when the size of some elementary free-volume
units or of some packing defects is comparable to that of the particles and so the latter may move diffusively by
directly swapping their positions with the former [40, 68].
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linear-response approximation. Furthermore, we show that the skewness of the distribution
in the direction of the applied bias decays as

√
ln(n)/n and is positive, which means that

fluctuations are more pronounced in the jammed region in front of the BI than in its wake,
depleted by the gas particles. Next, we show that the kurtoses in both directions vanish in
proportion to ln(n)/n and, hence, the probability distribution function P (Rn) of the BI
vector displacement tends towards a Gaussian function as n→∞, at least for sufficiently
dense systems, for both the direction perpendicular to the bias and that parallel to it. Note
that the observation that the kurtosis of the distribution along the direction of the bias
vanishes has also been made from numerical MD simulations in [61]. Clearly, when there
is no external bias and the bath is homogeneous [54, 72], convergence of the distribution
to a Gaussian one will not be a surprise. However, in our case, given a non-equilibrium
situation and essential microstructural changes of the medium, this result certainly cannot
be expected a priori.

Capitalizing on our results obtained via an exact approach, we present some
phenomenological arguments which enable us to reproduce the dependence on n9 of the
variance σ2

x for infinite 2D systems in O(ρ0) and to make predictions on the dynamical
behaviour in other geometries. First, we argue that the same weakly super-diffusive
behaviour σ2

x ∼ n ln(n) as was observed for infinite strictly 2D systems should take place in
infinite 3D slit-like pores (slabs) with finite width. Next, we argue that the super-diffusive
broadening becomes much more pronounced in confined, quasi-1D geometries—infinite
2D stripes and 3D rectangular capillaries, in which the variance σ2

x of the distribution
P (Rn) along the direction of the bias exhibits a strong power-law acceleration of growth,
σ2
x ∼ n3/2 (compared to a diffusive growth σ2

x ∼ n in the absence of the bias). These results
are supported by our numerical simulations. We note that the exponent ‘3/2’ is specific
to diffusive motion of vacancies; in the case where the particles (and hence, the vacancies)
perform sub-diffusive motion, the exponent characterizing the growth of σ2

x will be higher.
In contrast, for strictly one-dimensional, single-file systems our simulations suggest

that no field-specific behaviour takes place: we observe that the variance always goes
as σ2

x ∼
√
n, as it does in the absence of any bias, and moreover, even the prefactor in

this growth law is independent of the bias. These numerical results seem to be rather
counter-intuitive, especially in view of a rather complicated form of the FVR for single-
file systems [24]–[26]. This singular case will be examined analytically elsewhere [69]. Our
results on the behaviour of the variance of the distribution along the direction of the bias
are summarized in table 1.

Finally, noticing that in our lattice gas model the BI dynamics is also highly
intermittent, we reconsider the CTRW-type picture presented in [61]. In contrast to [61],
we do not resort to any ad hoc assumption on the form of the distribution of the key
property in the CTRW picture—the discrete random process Nn describing the number
of jumps made by the BI during time interval n. Our approach is based on the analysis
of the microscopic dynamics. We show here that, in O(ρ0), from the mathematical point
of view the super-diffusive broadening of fluctuations in the confined geometries (stripes,
capillaries, 2D systems and slabs, excluding the single files) arises due to the fact that
the discrete random process Nn appears to be linked to a hidden random process, which
behaves asymptotically as a super-diffusive fractional Brownian motion (fBm) [70] with

9 Of course, using such qualitative arguments we cannot obtain the coefficients ν1 and ν2, as this requires a much
more onerous analysis.
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Table 1. The variance σ2
x of the distribution of the BI vector displacement at

time n along the direction of the bias in O(ρ0). Depending on the geometry
of the system, the growth of σ2

x in this order can be sub-diffusive, diffusive or
super-diffusive.

Geometry
Effective
dimension σ2

x Behaviour

Infinite 2D lattice 2D ∼ n ln(n) Weakly super-diffusive
Infinite 3D slit pore Quasi-2D ∼ n ln(n) Weakly super-diffusive
Infinite 2D stripe Quasi-1D ∼ n3/2 Strongly super-diffusive
Infinite 3D capillary Quasi-1D ∼ n3/2 Strongly super-diffusive
Single file 1D ∼ n1/2 Sub-diffusive
Infinite 3D lattice 3D ∼ n Diffusive

positively correlated increments and which governs the long-time behaviour of the variance
ofNn. From the physical point of view, the mechanism underlying this super-diffusive fBm-
type process emerging in such confined geometries is associated with persistent recurrent
returns to the BI location of the vacancies which have interacted once with the BI.
Therefore, the BI dynamics represents a rather interesting combination of CTRW-type
and fBm-type processes. This analysis confirms, also, our previous conclusion that no
super-diffusive behaviour emerges in infinite three-dimensional systems.

This paper is structured as follows. In section 2 we describe the model and introduce
basic notation. In section 3 we briefly outline the steps involved in the derivation of the
propagator of a biased intruder in a two-dimensional lattice gas, infinite in both directions,
with high particle density. Furthermore, in section 4, focusing on infinite two-dimensional
square lattices, we present results exact in O(ρ0) for the BI mean velocity (FVR), the
variances, the skewness and the kurtoses of the probability distribution P (Rn) along the
direction of the bias and in the direction perpendicular to it, as well as the results from
the numerical Monte Carlo simulations. In section 5 we evaluate the leading long-time
corrections to the asymptotic Gaussian forms of the distribution and compare them with
the numerical data. In section 6 we present some qualitative theoretical arguments which
support the time dependence of the variance σ2

x obtained in infinite 2D geometries in O(ρ0)
and allow us to make predictions for the behaviour in some confined geometries—infinite
slit-like pores (slabs), two-dimensional stripes and three-dimensional capillaries—which
have applications in microfluidics. Furthermore, we confirm our predictions by numerical
simulations. In section 7 we revisit the phenomenological description based on a CTRW-
like picture proposed in [61]. Finally, in section 8 we conclude with a brief recapitulation
of our results.

2. The model and basic notation

We consider the dynamics of a BI on a square lattice of Lx × Ly sites r = (x, y) with
integer valued components and periodic boundary conditions in both directions.

The lattice is populated with some amount of hard-core bath particles, placed at
random subject to a single-occupancy condition, and a single hard-core intruder which
is initially placed at the origin. M lattice sites are vacant and the initial positions of
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the ‘vacancies’ are denoted by Zj
0, j = 1, . . . ,M . The system evolves in discrete time

n and particles move randomly by exchanging their positions with the vacancies. The
bath particles have symmetric hopping probabilities, i.e., given that a vacancy is at an
adjacent site, any bath particle exchanges its position with the vacancy with probability
1/4 independently of the direction. On the other hand, the intruder is subject to a constant
force F orientated in the positive x-direction. The normalized jump probabilities of the
(isolated) BI are given, in the usual fashion (see, e.g., [31]), by

pν = exp

(
β

2
(F · eν)

)/∑
µ

exp

(
β

2
(F · eµ)

)
, (1)

where β is the reciprocal temperature, eν is the unit vector denoting the jump direction,
ν ∈ {±x,±y}, (F · eν) is a scalar product and F = F ex. The sum with the subscript
µ (the normalization constant) denotes summation over all possible orientations of the
vector eµ.

We turn now to the limit of small density of vacancies, ρ0 = M/(Lx × Ly)� 1, and
focus on the behaviour in O(ρ0). Then, it is expedient to formulate the dynamics of the
system in terms of the dynamics of vacancies. Following [72], we stipulate that at each
tick of the clock each vacancy makes a step exchanging its position with a bath particle
chosen at random (with probability 1/4) from among its four neighbours, in the case when
neither of them is the BI. If one of the neighbouring particles is the BI, the situation is
a bit more complicated. According to [71] a correct choice of the transition probabilities,
which avoids spurious temporal trapping, is as follows: if a vacancy is at site Rn + eν at
time moment n and the BI occupies site Rn, then it exchanges its position with the BI
with probability

q−ν =
pν

3/4 + pν
, (2)

and with the probability 1− q−ν = 1/(3 + 4pν) with any of three adjacent bath particles.
Note that in a complete description of the lattice gas dynamics, these rules would

have to be supplemented for cases where two vacancies are adjacent or have common
neighbours; however, these cases contribute only to O(ρ2

0), so we can leave the rules for
such events unstated in our theoretical analysis. For numerical simulations we use an
obvious prescription: that when two (three, four) vacancies are adjacent or have common
neighbours, a chosen vacancy attempting to make a move ‘treats’ the other vacancies
as the bath particles. We note finally that analogous microscopic dynamic rules can be
defined for any other above mentioned geometry.

The general properties of the BI dynamics that we are interested in here are the
integrated distributions

P (X) =
∑
Y

P (Rn), (3)

and

P (Y ) =
∑
X

P (Rn), (4)

along the direction of the bias and in the direction perpendicular to it, respectively, and
their moments, such as the mean displacementX (and, hence, the mean velocity v =X/n),
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the variances σ2
x and σ2

y, the skewness γ1(x) along the direction of the bias, and the kurtoses

γ2(x) and γ2(y) . The skewness is defined in the usual fashion as γ1(x) = k3/σ
3
x, where k3

is the third cumulant of the distribution P (X), while the kurtosis γ2(x) (or γ2(y)) obeys
γ2(x) = k4/σ

4
x (or γ2(y) = k4/σ

4
y), where k4 is the fourth cumulant of the distribution P (X)

(P (Y )).

3. The probability distribution in infinite 2D systems

Our analysis is based on the analytical approach developed previously by two of us for
infinite two-dimensional lattices in [71], in which we extended to over a more general case
of an intruder subject to an arbitrary constant force the seminal work by Brummelhuis and
Hilhorst [72], who studied the dynamics of an unbiased intruder. In essence, this approach
consists in assuming that the intruder encounters just a single vacancy at a time (which
is appropriate at low density of vacancies in the system), so that the problem can be
reduced to the description of interactions of the BI with just a single vacancy. The latter
can be solved explicitly by representing the propagator of the BI at time n via recursion
relations involving first-passage probabilities. This approach yields results which are exact
in O(ρ0) [72] and thus should be quite accurate when ρ0 � 1. In what follows, we will
check our analytical predictions against the results of numerical simulations for different
densities of vacancies.

Here we briefly outline the main steps involved in the derivation of the probability
distribution function of the BI vector displacement at time moment n. More details can
be found in [71, 72]. Let P (Rn|{Zj}) denote the probability of finding the BI at position
Rn at time moment n as a result of its interaction with all the vacancies collectively,

P (Rn|{Zj}) =
∑
R1

n

. . .
∑
RM

n

δ
(
Rn,R

1
n + · · ·+ RM

n

)
P (R1

n, . . . ,R
M
n |{Zj}), (5)

where Pn(R1
n, . . . ,R

M
n |{Zj}) stands for the conditional probability that within the time

interval n the BI has performed a displacement R1
n due to the interactions with the first

vacancy, a displacement R2
n due to the interactions with the second vacancy, etc. In the

lowest order in ρ0, the vacancies contribute independently to the total BI displacement,
so the latter conditional probability can be approximated as

P (R1
n, . . . ,R

M
n |{Zj}) '

M∏
j=1

P (Rn|Zj), (6)

where P (Rn|Zj) denotes the solution of a problem with only a single vacancy initially at
Zj

0. Next, averaging P (Rn|{Zj}) over the initial distribution of the vacancies, one finds [72]

P (Rn) =
〈
P (Rn|{Zj})

〉
'
∑
R1

n

. . .
∑
RM

n

δ
(
Rn,R

1
n + · · ·+ RM

n

) M∏
j=1

〈
P (Rn|Zj)

〉
. (7)

Furthermore, defining the Fourier transformed distributions

Pn(k) =
∑
Rn

exp (i(k · Rn))
〈
P (Rn|{Zj})

〉
, (8)
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and

pn(k) =
∑
Rn

exp (i(k · Rn))
〈
P (Rn|Zj)

〉
, (9)

and summing over Rn, one finds that

Pn(k) ' pMn (k), (10)

which yields, upon going to the thermodynamic limit Lx, Ly →∞ (with ρ0 = M/(Lx×Ly)
and n kept fixed), the following general result:

Pn(k) ' exp (−ρ0 Ωn(k)) . (11)

Then, the desired probability distribution function obeys

P (Rn) ' 1

4π2

∫ π

−π
dk exp (−i (k · Rn)− ρ0 Ωn(k)) . (12)

Here Ωn(k) is defined by

Ωn(k) =
n∑
l=0

∑
ν

∆n−l(k|eν)
∑
Z6=0

F ∗l (0|eν |Z), (13)

where F ∗l (0|eν |Z) is the conditional probability for a random walk starting at Z to arrive
for the first time at the origin at the nth step, being at site 0 + eν at time moment n− 1
(see [71] for more details), and

∆l(k|eν) = 1− pl(k) exp (i(k · eν)) . (14)

The function Ωn(k) can be determined by introducing the generating function

Ωz(k) =
∞∑
n=0

Ωn(k) zn, (15)

for which one finds the following asymptotic solution [60]:

Ωz(k)∼z→1−
1

1− z
Φ(k)

1− z + χ−1
z Φ(k)

, (16)

where

χz∼z→1− −
π

(1− z) ln(1− z)
, (17)

is the leading asymptotic term of the generating function of the mean number of ‘new’
(also called ‘virgin’ [65]) sites visited in the nth step.

Finally, the function Φ(k) obeys

Φ(k) = −ia0kx +
a1k

2
x

2
+
a2k

2
y

2
, (18)

with aj = aj(F ) defined for arbitrary βF by

a0 =
sinh(βF/2)

(2π − 3) cosh(βF/2) + 1
, (19)
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a1 =
cosh(βF/2)

(2π − 3) cosh(βF/2) + 1
, (20)

and

a2 =
1

cosh(βF/2) + 2π − 3
. (21)

Note that P (Rn) in equation (12) is normalized.

4. The FVR, the variances, the skewness and the kurtosis of the distribution for
infinite 2D systems

4.1. The force–velocity relation

Differentiating the characteristic function Pn(k) in equation (11) with respect to kx and
setting kx and ky equal to zero, one finds the following FVR:

v ∼ ρ0 a0, (22)

where the symbol ‘∼’ will denote from now on the exact (for arbitrary bias) leading
large-n behaviour in O(ρ0). Note that for βF � 1, equation (22) predicts a Stokesian,
linear dependence of the velocity v on the magnitude of the applied bias F ,

v ∼ βρ0

4(π − 1)
F, (23)

in which ζ = 4(π − 1)/βρ0 can be identified as the friction coefficient. Since the diffusion
coefficient D of the intruder in the absence of the external bias is given in O(ρ0) by
D = ρ0/4(π − 1) (see, e.g., [32], [72]–[74] and references therein) one may immediately
notice that:

• the result in equation (23) ensures the validity of the Einstein relation µ = βD between
the diffusion coefficient and the mobility µ = limF→0v/F .

Within the opposite limit βF � 1, the velocity saturates at a limiting value

v∞ ∼
ρ0

2π − 3
. (24)

We hasten to repeat that such a saturation stems from the microscopic dynamic rules
defined in our model and may not take place for systems in which the motion of the
particles proceeds in a different way.

4.2. The variances

Furthermore, differentiating the characteristic function in equation (11) twice with respect
to ky (or kx) and setting kx and ky equal to zero, we find the following asymptotic results
for the variances of the distribution along the y- and x-axes

σ2
y ∼ ρ0 a2 n (25)

and

σ2
x ∼ ρ0

(
a1 +

2a2
0

π
(Hn+1 − 1)

)
n, (26)

where Hn =
∑n

k=1k
−1 is the nth harmonic number.
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Figure 2. Velocity v (panel a) and σ2
y/n (panel b) versus ρ0 for βF = 5.

The dashed lines define our theoretical predictions in equations (22) and (25),
respectively. The inset in panel a shows the relative deviation of v from
equation (22): ∆v = |v − ρ0a0|/ρ0a0. The symbols here and henceforth denote
the results of the numerical Monte Carlo simulations.

In figure 2 (panels a and b) we compare our analytical results for the mean velocity and
the variance in the y-direction obtained in O(ρ0) with the results of numerical simulations
for fixed bias βF = 5 and different values of ρ0. One notices that our analytical results
are in very good agreement with the numerical data for ρ0 up to 0.15.

Noticing next that in the large-n limit, Hn+1 ∼ ln(n) + γ +O(1/n), where γ ≈ 0.577
is the Euler–Mascheroni constant, we find that asymptotically

σ2
x ∼ ρ0

(
a1 +

2a2
0

π
(γ − 1) +

2a2
0

π
ln(n)

)
n. (27)

On comparing the results in equations (25) and (27), we make two important observations:

• For a finite bias, the variance of the distribution along the x-axis grows (weakly)
super-diffusively, due to an additional logarithmic factor, as compared to the variance
along the y-axis, which shows a usual diffusive behaviour. Therefore, the distribution
becomes progressively broader along the x-direction, as compared to its behaviour
along the y-direction.

• The prefactor in the term proportional to n ln(n) in equation (27), i.e., a2
0 = v2/ρ2

0,
is proportional to (βF )2 when βF � 1. This implies that such a super-diffusive
behaviour emerges beyond and, hence, cannot be obtained within the linear-response
approximation.

In figure 3 we present the evidence for the additional logarithmic factor in the x-
component of the variance. Note parenthetically that such logarithmic corrections, which
are specific to infinitely large systems, are notoriously difficult to observe. In our case,
care has to be exercised to ensure that the BI and the vacancies (which, as a matter of
fact, effectively move much faster than the BI) do not feel the finite-size effects, but also
that, because of the periodic boundary conditions, there is no interference between the
jammed region in front of the BI and the power-law wake depleted by the particles,
which emerges behind the biased intruder. Moreover, since the logarithm is a slowly
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Figure 3. Numerical evidence for the logarithmic factor in σ2
x. We plot φ(n) (see

the text) versus ln(n) for ρ0 = 0.002, βF = 100 (�), βF = 5 (C), βF = 2 (♦) and
βF = 1 (©). The dashed lines are our predictions from equation (27).

varying function, one needs at least several decades of the observation time to confirm
the logarithmic correction. To this end, in our numerical simulations we considered fairly
large and elongated, dense lattice systems with Lx = 5000 and Ly = 200 and went to
times of order 2× 104. Next, to single out this contribution, we plotted here versus ln(n)
the function φ(n) = σ2

x/n− ρ0(a1 + 2a2
0(γ − 1)/π), which according to our equation (27)

should grow in proportion to ln(n). One does indeed observe an apparent crossover to a
logarithmic behaviour, which persists then over two time decades.

It is important to remark that our numerical data (see figure 3) suggest that the
crossover to an anomalous behaviour occurs quite early, at a time of the order of 103

steps. As a matter of fact, at such times the BI does not displace itself at any significant
distance; on the contrary, for βF = 1, 2, 5 and 100, the average displacement amounts just
to 0.2, 0.4, 0.56 and 0.6 lattice spacings for ρ0 = 0.002. This signifies that such a weakly
super-diffusive behaviour can be accessed, in principle, by molecular dynamics simulations
of off-lattice systems under appropriate density/temperature conditions.

4.3. The skewness and the kurtoses of the distribution

We note that the ‘diffusive’ growth of σ2
y does not ensure the convergence of the y-

component of the distribution P (Rn) to the Gaussian distribution, and neither does the
(weakly) super-diffusive growth of σ2

x rule out a long-time Gaussian behaviour of the
x-component of the distribution P (Rn). To answer the question of the actual asymptotic
behaviour of the propagator, we turn to the analysis of the higher moments of the
distribution. It is straightforward to find that the asymptotic behaviour of the skewness
γ1(x) of the distribution along the x-axis is given by

γ1(x) ∼ 6a0 (a2
0 + πa1/ ln(n))

(2a2
0 + πa1/ ln(n))

3/2

√
ln(n)

π ρ0 n
. (28)
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Note that γ1(x) > 0, so the distribution has a positive skew which implies that, rather
counter-intuitively, fluctuations in the BI position are more pronounced for X > v n, i.e., in
the region where the bath particles jam, than for X < v n, where the bath particles
are essentially depleted. The skewness decays as γ1(x) ∝

√
ln(n)/n, i.e., somewhat more

slowly, due to an additional factor
√

ln(n), than the skewness of the distribution in the
case of an isolated biased particle.

Next, for the kurtosis γ2(x) we get

γ2(x) ∼
6
(
4a4

0 + 6a2
0πa1/ ln(n) + π2a2

1/ln
2(n)

)
(2a2

0 + πa1/ ln(n))
2

ln(n)

πρ0 n
. (29)

Conceptually this is a very important result because it shows that, at least in the lowest
order in ρ0, the kurtosis vanishes as n → ∞, and, hence, that P (X) converges to a
Gaussian, despite a non-equilibrium situation and essential microstructural changes of
the medium. Similarly to the skewness, the decay of the kurtosis again proceeds more
slowly than in the case of an isolated biased particle due to an additional logarithmic
factor.

Furthermore, we find that the third cumulant of the y-component of the distribution
P (Rn) vanishes, and, hence, so does the skewness γ1(y), as it should. For the kurtosis of
P (Y ) we obtain

γ2(y) ∼ 6 ln(n)

π ρ0 n
. (30)

Curiously enough, the latter equation shows that γ2(y) asymptotically decays exactly in
the same way as γ2(x), despite the fact that x- and y-directions are not equivalent because
of the presence of a bias. Moreover, we observe that γ2(y)/γ2(x)→ 1− as n→∞, which
means that at sufficiently large times the kurtoses in the x- and y-directions become equal
to each other. Quite surprisingly,

• γ2(y) appears to be independent of the bias for the whole range of applicability of the
result in equation (16),

• γ1(x) and γ2(x) become independent of the applied bias when ln(n)� πa1.

In contrast, the variances σ2
x and σ2

y do depend on βF .
We also note here parenthetically that for an isolated particle performing a biased

Polya random walk, the distribution has a negative skew, the x- and y-components of
both the skewness and the kurtosis are different, and, moreover, the x-components are
strongly increasing functions of βF . Therefore, it is the perturbed quiescent medium which
dictates this peculiar form of the distribution and damps down the dependence of γ1(x)
and γ2(x) on βF .

In figure 4 (panels (a) and (b)) we compare our analytical predictions for γ1(x) and
γ2(x) in equations (28) and (29) with the results of numerical simulations (symbols).
To single out the logarithmic factors, we plot here the functions γ̃1(x) = n γ2

1(x) and
γ̃2(x) = nγ2(x) versus ln(n). Note that the kurtosis approaches the asymptotic prediction
in equation (29) quite rapidly, at times of order n ∼ 102 and, moreover, the behaviour
independent of βF is established quite fast as well. This confirms our result for the kurtosis
and, hence, signifies that the distribution in the direction of the bias does indeed converge
to a Gaussian. The skewness, which decays at a slower rate, approaches the asymptotic
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Figure 4. Reduced skewness γ̃1(x) = nγ2
1(x) (panel (a)) and the kurtosis γ̃2(x) =

nγ2(x) (panel (b)) for ρ = 0.002, βF = 1 (©) and βF = 100 (�). Dashed and solid
lines are the corresponding theoretical results from equations (28) and (29).

result in equation (28) a decade later and the behaviour independent of βF sets in at
larger times, which are not accessible in our numerical simulations of this essentially
many-particle system.

5. Long-time corrections to the asymptotic Gaussian distribution in infinite 2D
systems

We turn next to the corrections for large (but finite) n to the asymptotic Gaussian
distribution of the BI position. For simplicity, we will not consider the complete
distribution, but rather the behaviour of its components, equations (3) and (4).
Multiplying both the numerator and the denominator of equation (16) by the complex
conjugate of the denominator, introducing a small parameter εx = a1 ln(n)/2πσ2

x ∝ 1/n
and expanding Pn(kx, ky = 0) in equation (11) up to the second order in εx, for the x-
component of the distribution function we get

P (X) =
exp

(
− (ηx − ηx)

2 /2
)

√
2πσ2

x

{1 + [3(g − f) + 6fη2
x − (g + f) η4

x

+ 2 (3 (g − 2f) + (g + 2f) η2
x) ηx ηx − 6 (g − f + fη2

x) η
2
x

− 2(g − 2f) ηx η
3
x + (g − f) η4

x] εx +O(ε2x ln(n))}, (31)

where we have conveniently chosen ηx = X/σx, ηx = vn/σx, g = 1 + a2
0 ln(n)/πa1 and

f = πa1/2(πa1 + 2a2
0 ln(n)). In a similar fashion, introducing a small parameter εy =

a2 ln(n)/2πσ2
y ∝ ln(n)/n and expanding Pn(kx = 0, ky) in equation (11) up to the second

order in εy, we obtain the following result for the y-component of the distribution:

P (Y ) =
exp

(
−η2

y/2
)√

2πσ2
y

{
1 +

[
3− 6η2

y + η4
y

] εy
2

+O(ε2y)
}
, (32)
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Figure 5. Time evolution of the x- and y-components of P (Rn) for times n = 104

( ), 2 × 104 ( ), 3 × 104 ( ), 4 × 104 ( ) and 5 × 105 (©). The solid
lines correspond to our results in equations (31) and (32). Panel (a): P (X) for
ρ0 = 0.002 and βF = 100. The inset shows the L2-distance between equation (31)
and the numerical results (symbols). Panel (b): P (Y ) for ρ0 = 0.002 and βF = 1.

where we have used the notation ηy = Y/σy. Note that equations (31) and (32) become
identical when βF = 0.

In figure 5 (panels a and b) we compare the results from equations (31) and
(32) against the numerical simulations data. We observe that as time progresses, the
discrepancy between our equation (31) and the numerically obtained P (X) gets smaller,
as evidenced by the exponential decay of their L2-distance (inset in panel a). However, it is
worthwhile to remark that the convergence is non-uniform, so we have a better agreement
between the theory and numerics for the values of X to the left from the maximum
than to the right of it (recall that the distribution has a positive skew). In the direction
perpendicular to the bias (panel b), we observe a pretty good agreement between our
equation (32) and the numerical data.

6. Confined geometries: single files, slit pores, stripes and capillaries

We begin this section with the following remark: the appearance of the additional
logarithmic factor in equation (27) in a two-dimensional infinite system under study can
be interpreted as a sign that d = 2 is the marginal dimension for this problem, which is
apparently associated with the fact that 2D is the marginal dimension in which random
walks executed by the vacancies are recurrent. If this is true, one may expect that in
three dimensions the variance will show a usual diffusive growth (with, however, a larger
prefactor in the direction of the bias than in the direction perpendicular to it), and that in
one-dimensional systems an additional power-law factor may emerge. Below, we analyse
this question in detail.

6.1. Single-file systems

If the recurrence is the only criterion, we may expect the broadening effect to become
much more pronounced for a biased diffusion in single-file systems, so the variance of
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Figure 6. The variance σ2
x of the displacement of a biased intruder in dense (with

ρ0 = 0.002) single-file lattice gases for different values of βF : βF = 1 ( ), βF = 5
( ) and βF = 100 ( ). The dashed line indicates the slope n1/2.

the biased intruder should get an additional power-law dependence in time. On the other
hand, as we have already mentioned in section 1, single-file systems show a very singular,
sub-diffusive behaviour in the absence of the bias [49]–[54] and a sub-linear growth of the
mean displacement of a biased intruder [23]–[25], which is due to the fact that the particles
cannot bypass each other. The outcome of the combined effect of these two competing
factors is not clear a priori. Note, as well, that the theoretical analysis developed in the
previous sections does not directly apply to single-file systems and here we resort instead
to numerical analysis of the BI dynamics in dense single-file lattice gases of hard-core
particles, looking beyond the force–velocity relation [24, 25]. Analytical analysis of the
behaviour in single-file systems, which involves completely different physical mechanisms
as compared to those for geometries with d > 1, will be presented elsewhere [69].

In figures 6 and 7 we present the results of the numerical simulations for the variance,
skewness and kurtosis of the displacement of a biased intruder in single-file lattice gases.
Observe that:

• the variance σ2
x ∼ n1/2, precisely as in the unbiased case, and moreover, even the

prefactor appears to be independent of the value of the pulling force (as evidenced in
figure 6);

• the skewness and the kurtosis decay as 1/n1/4 and 1/n1/2, respectively.

The skewness shows some variation with βF (notice that the curve for the smallest
force βF = 1 goes apart of the curves for higher βF , which merge together) while the
analogous dependence of the kurtosis is damped down completely. Therefore, we conclude
that an external bias has almost no effect on the fluctuations of the BI dynamics in dense
single-file lattice gases: the variance grows sub-diffusively and in exactly the same way
as in the absence of the external force, the same happens for the kurtosis, and only the
skewness shows some dependence on βF .
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Figure 7. The skewness γ1(x) (panel (a)) and the kurtosis γ2(x) (panel (b)) of
the probability distribution function of the displacement of a biased intruder in
dense (with ρ0 = 0.002) single-file lattice gases for different values of βF : βF = 1
( ), βF = 5 ( ) and βF = 100 ( ). The dashed lines indicate the slopes
n−1/4 (panel (a)) and n−1/2 (panel (b)).

6.2. Slit-like pores, stripes and capillaries

In this subsection we present a qualitative generalization of our results exact in O(ρ0)
obtained for infinite two-dimensional systems over the cases of 3D slit pores (Lx = Ly =∞
and Lz fixed), 2D stripes (Lx =∞ and Ly fixed) and rectangular 3D capillaries (Lx =∞,
Ly and Lz fixed). First we focus on the time dependence of the variance of the biased
intruder in the direction of the applied bias, building up our theoretical arguments on the
structure of the result in equation (27). The latter can be represented as

σ2
x ∼ ρ0 a1 n+ ρ0 a

2
0

n

χn
, (33)

where a0 and a1 are (geometry-dependent) functions of βF , and χn is the mean number of
new sites visited in the nth step by any of the vacancies. By definition, χn is given by [65]

χn = Sn − Sn−1, (34)

where Sn is a fundamental characteristic property of a lattice discrete-time random walk
defining the mean number of distinct lattice sites visited by any of the vacancies up to
time n. Its continuous-space and continuous-time counterpart, called in the mathematical
literature the mean volume of the Wiener sausage, is the mean volume swept up to time
t by a finite-sized diffusive particle (see, e.g., [75, 76, 79] and references therein).

In general, for systems which are infinite at least in one direction, the long-time
asymptotical behaviour of Sn follows a power law of the form

Sn ∼ nα, (35)

where the exponent α ≤ 1 depends on the effective dimensionality of the lattice. In general
(and not necessarily for standard Polya walks only), the exponent α is indicative of the
degree of oversampling: larger α means that a vacancy returns less to already visited
sites and mostly moves to new sites. In contrast, smaller α would indicate that a vacancy
predominantly revisits already visited sites, so the spatial extent of its typical trajectory
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would be smaller. In other words, α is an indicator of the degree of mixing of the lattice
gas with larger values of α corresponding to a better mixing.

Note that α < 1 for systems in which the random walk is recurrent, while equation (35)
with α = 1 holds for systems in which random walks are not recurrent. For its continuous
counterpart, the mean volume of the Wiener sausage shows exactly the same power-law
behaviour with α < 1 for systems in which random (not necessarily standard Brownian)
motion is, in the nomenclature of de Gennes [77], compactly exploring space, and α = 1
corresponds to the case of the so-called non-compact exploration. Examples corresponding
to the former and to the latter cases can be found in [75, 76, 79].

Noticing that, by virtue of equations (34) and (35), the mean number of new visited
sites χn ∼ nα−1, supposing that α < 1 (i.e., dealing with recurrent random walks or a
random motion which compactly explores space), and assuming that equation (33) still
holds, we infer that the leading long-time behaviour of the variance σ2

x is governed by the
second term on the right-hand side of equation (33), and so

σ2
x ∼ ρ0 n

2−α. (36)

Capitalizing on the latter relation, we may draw an important qualitative conclusion: the
smaller α is, i.e., the less efficient the mixing of the lattice gas by the vacancies is, the faster
the growth of the variance of the BI displacement will be. For α = 1, i.e., for non-recurrent
random walks or non-compact exploration of space, in which case the mixing of the system
by the vacancies is most efficient, both terms in equation (33) grow in proportion to time
n, so the overall behaviour is diffusive.

Note that in the marginal case, i.e., for infinite two-dimensional systems, the leading
long-time behaviour of the mean number of distinct sites visited follows (see, e.g., [65])
Sn ∼ πn/ ln(n), so χn ∼ π/ ln(n) and we recover our exact result of equation (27).

We turn next to some specific confined geometries of interest. Suppose that we have
a three-dimensional slit-like geometry characterized by Lx = Ly = ∞ and a fixed finite
thickness Lz. For such a geometry one finds an effectively two-dimensional behaviour for
the mean number of distinct sites visited, that is, Sn ∼ Lzn/ ln(n). This implies that the
mean number of new sites visited in the nth step behaves asymptotically as χn ∼ Lz/ ln(n)
and consequently, the variance in the limit n→∞ obeys an asymptotic, weakly super-
diffusive law

σ2
x ∼

ρ0

Lz
n ln(n), (37)

which is similar to the exact result that we obtained for infinite two-dimensional systems.

For infinite two-dimensional stripes such that Lx =∞ and Ly is fixed, one finds [72]
Sn ∼ Lyn

1/2, which implies that χn ∼ Ly/n
1/2, so the variance exhibits a strongly super-

diffusive behaviour:

σ2
x ∼

ρ0

Ly
n3/2. (38)

Lastly, for infinitely long rectangular capillaries with Lx =∞ and Ly, Lz fixed, we have
Sn ∼ LyLzn

1/2 and χn ∼ LyLz/n
1/2, so

σ2
x ∼

ρ0

Ly Lz
n3/2, (39)
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Figure 8. Monte Carlo simulation results for the variance σ2
x of the BI

displacement in infinite stripes (panel (a)) and rectangular capillaries (panel (b))
for ρ0 = 0.002 and βF = 100. The dashed lines in both panels have the slope
n3/2.

i.e., again a strongly super-diffusive behaviour is shown. Both equations (38) and (39)
predict that the variance σ2

x ∼ n3/2 in the leading order in n, which is a straightforward
consequence of the fact that both systems are effectively one-dimensional ones. Monte
Carlo simulations performed for very elongated stripes (Lx = 104 and Ly = 3) and
capillaries (Lx = 104 and Ly = Lz = 3)—see figure 8—confirm our predictions. Note that
here, like for infinite 2D systems, an anomalous super-diffusive behaviour of the variance
along the direction of the bias starts to develop at rather early times, at n ≈ 103. For such
times, the mean displacement of the BI amounts just to 0.5 times a lattice spacing for
βF = 102 and ρ0 = 0.002. This signifies that in our case, contrary to the cases for many
physical systems in which an anomalous behaviour shows up only at very large times, the
super-diffusive growth of the variance along the direction of the bias appears already in
the earliest stages of the process and thus can be accessed within MD simulations. As a
matter of fact, this is quite consistent with the numerical results of the MD simulations
of a biased intruder in binary Yukawa liquids in [57, 59], which revealed a crossover to a
super-diffusive behaviour at rather early times. The dynamical exponent ξ ≈ 1.5 observed
in [59] for an elongated, capillary-like geometry appears to be exactly equal to the value
3/2 which we predict here.

To close this section we remark that the arguments presented in this subsection can
be readily generalized for continuous-space and continuous-time dynamics, by identifying
vacancies present in the lattice gas with some elementary units of the free volume (see
[68] and references therein) which are sufficiently large to allow for any individual particle
motion due to a direct swapping of its position with any such units, rather than due to
collective motion of all particles. Note that, of course, such a picture is plausible only in a
certain density/temperature range. Note, as well, that the effective density of such units
is much smaller than the available free volume which makes our analysis of the behaviour
in O(ρ0) appropriate. One finds then from [78] that for an infinitely long capillary of
radius R with reflecting boundaries, the mean volume St visited by an elementary free
volume performing a Brownian motion with diffusion coefficient Df within time t follows
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St ∼ R2
√
Df t, so the variance grows in proportion to t3/2. Note that the variance appears

to be inversely proportional to
√
Df , which confirms the trend observed in equation (36):

namely, the less effective the mixing of the system is (i.e., with progressively smaller
values of Df ), the more pronounced the anomalous broadening of fluctuations in the
BI dynamics will be. We note as well that the arguments presented are not limited to
standard random walks or Brownian motion, and can be readily generalized for other
types of random motion performed by particles or vacancies—and in particular, when
due to particle–particle interactions the motion of the latter becomes anomalous and
can be considered as continuous-time random walks with a broad distribution of pausing
times [63]–[65], [80]. Lastly, we notice that such a picture predicts that in three dimensions
(and higher), the growth of the variance σ2

x along the direction of the bias will show a
usual diffusive growth, since Sn ∼ n.

7. The CTRW picture revisited

As observed in MD simulations of a BI dynamics in binary Yukawa liquids in [57, 58]
and in Lennard-Jones liquids in [61], any individual trajectory of the biased intruder
shows a highly intermittent behaviour along the direction of the bias: the BI occasionally
moves on a small random distance, but spends most of its time caged by other particles.
Similarly, in our discrete-space and discrete-time model, the intruder stays still under a
‘dynamic arrest’ on some lattice sites, being blocked by the lattice gas particles, until
any of the vacancies arrives at an adjacent site and releases it. Such a type of random
motion does indeed resemble a typical behaviour of the so-called continuous-time random
walk (see, e.g., [63]–[65] and references therein) characterized by a broad distribution of
waiting times—time intervals between the consecutive jumps. This similarity prompted
the authors of [61] to propose a phenomenological CTRW-type model, allowing them to
conclude that the ultimate regime of growth of the variance σ2

x is diffusive. This section is
designed to provide a deeper look into this picture, proposing an approach in which the
distribution of the waiting times is not postulated ad hoc, but emerges naturally due to
the dynamics of the vacancies.

We turn to the CTRW-type description proposed in [61] and represent Xn—an
instantaneous position of the BI along the x-axis at time moment n—as

Xn =
Nn∑
i

(x+ δxi), (40)

where Nn is a discrete random process which defines the number of jumps that the BI
made, for a given realization of the process, within the time interval n. Furthermore, x
is the average translation that the BI performs along the force direction during a single
jump and δxi is considered as the remaining translational length, which is a zero-mean,
delta-correlated random variable such that E{δxi} = 0 and E{δxiδxj} ∼ δi,j, where δi,j is
the Kronecker delta and E{·} denotes averaging with respect to different realizations of
the process [61]. Note that we appropriately changed the notation used in [61] to make it
closer to that used in our work and also use discrete time n in place of the continuous-time
variable t. Straightforward calculations give then for the variance σ2

x of Xn the following,
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quite general result:

σ2
x = E{x2

i }E{Nn}+ x2 Var (Nn) (41)

where E{Nn} is the mean number of jumps made by the BI within time interval n and
Var(Nn) is the variance of Nn.

Presenting some ad hoc assumptions on the form of the distribution of Nn, which,
in fact, do not rely on any microscopic dynamics, the authors of [61] concluded that
E{Nn} ∼ n and that Var (Nn) grows in proportion to n in the asymptotic regime,
i.e., diffusively. According to [61], the overall predicted behaviour of the function σ2

x

consists of two linear regimes with two different constant slopes; a smaller one at the early
stages of the process and a somewhat larger one (by less than an order of magnitude) at the
later stages. In [61] the regime interpolating between two diffusive ones was interpreted as
a super-diffusion, but no theoretical interpretation has been provided. Recall, as well, that
our results rule out any super-diffusive behaviour in infinite three-dimensional systems.

In the remaining part of our paper, focusing on the description of the BI dynamics in
the O(ρ0) limit in quasi-1D (stripes and capillaries), 2D and quasi-2D (slabs) systems
within a somewhat simplified version of our model, we proceed to show that, as a
matter of fact, the discrete random process Nn is linked to some stochastic process
which exhibits long-range temporal correlations in such confined geometries and entails
the super-diffusive growth of Var(Nn) in such systems. From the physical point of view,
such correlations appear due to the fact that in confined geometries the random walks
executed by the vacancies are recurrent, so that when a vacancy arrives at the location of
the BI, it will persistently return to its location. The statistics of such returns dominates
the long-time evolution of Var(Nn) in O(ρ0).

A simplified version of our model is defined as follows: we suppose that the force
acting on the BI is sufficiently large that when any vacancy arrives at the site adjacent to
the current location of the BI in the direction of the bias, the BI instantaneously swaps
its position with this vacancy, while backward jumps can be discarded. As in previous
sections, we constrain our consideration to very dense systems and focus on the long-time
behaviour in O(ρ0). Finally, we turn to the frame of reference in which the origin is placed
at the site adjacent to the BI in the direction of the applied bias and suppose that the
motion of the BI itself can be neglected in the first approximation. Within such a simplified
model we will calculate Var(Nn) exactly without resorting to any conjecture on the form
of the distribution of Nn.

In such a simplified model, evidently, the number Nn of jumps that the BI has
performed within time interval n is equal to the number of times the origin has been
occupied by at least one vacancy, i.e.,

Nn =
n∑
k=1

ηk, (42)

where ηk is a Boolean random variable such that ηk = 1 in the case where at time moment
k the origin is occupied by at least one vacancy, and ηk = 0 otherwise. Note that a similar
random variable has been studied previously in [81].
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From equation (42) we straightforwardly find that the variance of Nn obeys (for n ≥ 2)

Var(Nn) =
n∑
k=1

E{ηk}(1− E{ηk}) + 2
n−1∑
k=1

n∑
k′=k+1

Ck,k′ , (43)

where we made use of the evident relation η2
k = ηk and Ck,k′ is the correlation function of

the form

Ck,k′ = E{ηkηk′} − E{ηk}E{ηk′}. (44)

Suppose next that, as described in section 2, our lattice comprises K sites with M

vacancies placed initially at random positions Z
(m)
0 , m = 0, 1, . . . ,M , and the position

of the mth vacancy at time moment k, for a given realization of its trajectory, is denoted

as Z
(m)
k . Then, the indicator variable ηk can be written down explicitly as

ηk = 1−
M∏
m=1

(
1− δ

(
Z

(m)
k

))

=
M∑
m=1

δ
(
Z

(m)
k

)
−
∑
m,m′

δ
(
Z

(m)
k

)
δ
(
Z

(m′)
k

)
+ · · · , (45)

where δ
(
Z

(m)
k

)
is an auxiliary Boolean variable—an indicator of the event that the mth

vacancy is at the origin at time moment k; δ
(
Z

(m)
k

)
equals 1 if Z

(m)
k = 0 and equals 0

otherwise.
Averaging ηk in equation (45) over all possible trajectories and starting points of all

M vacancies, we get, in the leading order in ρ0,

E{ηk} =
M∑
m=1

E
{
δ
(
Z

(m)
k

)}
=
M

K

∑
Z0

Prob (0, k|Z0, 0) = ρ0, (46)

where Prob(0, k|Z0, 0) is the probability10 of finding a vacancy at the origin at time
moment k given that it commenced its random walk at site Z0. The last equality in
equation (46) is due to the fact that the sum over all starting points of this probability is
1, which is just the normalization condition. Note, as well, that the higher order terms in
equation (45) have a higher order in ρ0.

We turn next to the behaviour of the correlation function Ck,k′ in equation (44). The
correlation function of the Boolean occupation variables is given, in O(ρ0), by

E{ηkηk′} =
M∑
m=1

M∑
m′=1

E
{
δ
(
Z

(m)
k

)
δ
(
Z

(m′)
k′

)}
=

M∑
m=1

E
{
δ
(
Z

(m)
k

)
δ
(
Z

(m)
k′

)}
+ 2

M−1∑
m=1

M∑
m′=m+1

E
{
δ
(
Z

(m)
k

)}
E
{
δ
(
Z

(m′)
k′

)}
10 We discard the effect of an instantaneous transition from the origin X = 0 to the site X = −1 due to the
interaction with the BI and suppose that Prob(0, k|Z0, 0) is that of a standard, unperturbed random walk [65].
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=
M

K

∑
Z0

Prob (0, k′|0, k|Z0, 0) +
M(M − 1)

K2

= ρ0 Prob (0, k′ − k|0, 0) + ρ2
0, (47)

where Prob (0, k′|0, k|Z0, 0) is the probability that a random walk starting at Z0 will
arrive at the origin at the kth step, and will again revisit the origin at the k′th step, and
Prob (0, k′ − k|0, 0) is the probability that a random walk commencing at the origin will
be at the origin at time moment k′ − k. Noticing next that the term ρ2

0 in the right-hand
side of the latter equation cancels exactly with the term −ηk ηk′ in equation (44), we find
that the correlation function Ck,k′ in O(ρ0) is given by

Ck,k′ = ρ0 Prob(0, k′ − k|0, 0), (48)

so, conveniently rearranging summations, we find eventually that the variance Var (Nn)
of the number of jumps performed by the BI within time interval n obeys

Var (Nn) ∼ ρ0 n+ 2 ρ0

n−1∑
p=1

p∑
k=1

Prob (0, k|0, 0) . (49)

The asymptotic behaviour of Var (Nn) in equation (49) can be readily defined by
introducing the generating function Var (Nn)z =

∑∞
n=1Var (Nn) zn and then analysing its

leading singular behaviour in the limit z → 1−. Here we resort to a more straightforward
but qualitative analysis of the behaviour of the second term on the right-hand side
of equation (49), aiming just to determine its growth rate. To do this, note first
that Prob (0, k|0, 0) is a monotonically decreasing function of the argument k and
Prob (0, k|0, 0) ∼ k−d/2 when k→∞, where d has to be understood as an effective spatial
dimension of the system under study. Therefore, the correlation function in equation (48)
decays algebraically in any spatial dimension andNn in equation (42) is the sum of strongly
correlated random variables.

Now, the asymptotic growth of the double sum on the right-hand side of equation (49)
depends on how rapidly Prob (0, k|0, 0) decays with k, i.e., on the effective spatial
dimension d. For d = 1, i.e., for quasi-1D systems, e.g., infinitely long stripes or infinitely
long rectangular capillaries, Prob (0, k|0, 0) ∼ 1/

√
k, so the double sum in the right-hand

side of equation (49) grows in proportion to n3/2 and hence, by virtue of equation (41), we
recover the super-diffusive behaviour discussed in the previous section. For d = 2, i.e., in
two-dimensional cases and in quasi-three-dimensional slit pores, we have Prob (0, k|0, 0) ∼
1/k, which results in the asymptotic law ∼n ln(n), obtained via a rigorous approach in
section 4. Finally, for d > 2, one has a growth linear with time n of the second term in
the right-hand side of equation (49) and, hence, an overall diffusive growth of the variance
of the BI displacement along the direction of the bias. Note, however, that in three-
dimensional systems these correlations provide an additional contribution to the effective
diffusion coefficient. Note also that similar effects of correlations for random motion with
compact/non-compact exploration of space have been discussed recently in [82].

To further elucidate the properties of the discrete random process, we turn to a zero-
mean random process δNn = Nn − E{Nn}, which describes fluctuations of the number of
jumps performed by the BI within time interval n, and focus on the correlation function
of the form E{(δNn − δNm)2} at two different time moments n and m, such that n ≥ m.
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Straightforward calculations give

E
{

(δNn − δNm)2
}
∼ ρ0(n−m) + 2 ρ0

(n−m)−1∑
p=1

p∑
k=1

Prob (0, k|0, 0) , (50)

where the second term on the right-hand side is defined for n > m + 1 and equals 0,
otherwise. This result is exact in O(ρ0) and generalizes our equation (49).

The following points are to be emphasized. It is very likely, in view of our previous
results, that the distribution of δNn converges as n→∞ to a Gaussian distribution in any
spatial dimension. Random process δNn has stationary increments since the correlation
function in equation (50) depends only on the difference (n−m). In confined geometries, for
n�m, the dominant behaviour of E{(δNn−δNm)2} is given by the second, super-diffusive
term, which entails E{(δNn−δNm)2} ∼ (n−m)3/2 for quasi-one-dimensional systems and
E{(δNn − δNm)2} ∼ (n − m) ln(n − m) for two-dimensional and quasi-two-dimensional
systems, which signifies that the increments of the process δNn are positively correlated.
Summing up these three points, we may argue that the process δNn behaves effectively
as a super-diffusive fractional Brownian motion [70] with the Hurst index H = 3/4 for
quasi-one-dimensional geometries and is weakly, logarithmically super-diffusive for 2D
and quasi-2D geometries.

8. Conclusions

We have studied the dynamics of a hard-core intruder, biased by a constant external
force F , in a quiescent medium modelled as a dense lattice gas of hard-core particles
which move randomly without any preferential direction. From a different perspective,
this system can be viewed as an asymmetric simple exclusion process (ASEP) evolving in
a sea of symmetric exclusion processes (SEPs). It is well-known (see, e.g., [27]–[29]) that an
essentially cooperative behaviour emerges in such a system such that the biased intruder
(BI) drives the gas to a non-equilibrium steady state characterized by an inhomogeneous,
asymmetric spatial distribution of particles, which attains a stationary form in the frame
of reference moving with the intruder. In turn, the BI terminal velocity v depends, in
a non-linear fashion, on the size of the inhomogeneities that it produces, on the value
of the pulling force and on the density of the lattice gas particles. Here, looking beyond
the usual analysis of the force–velocity relation, we obtained a number of new results
in the leading order in the density of vacancies in the system, revealing an anomalous,
field-induced behaviour of the higher moments of the BI displacement, and provided a
physical explanation of the processes underlying the predicted behaviour. We emphasized
the vacancy-controlled mechanism of fluctuation broadening in the dynamics of a biased
intruder and highlighted the crucial role of the system’s geometry: as a matter of fact,
we showed that one can encounter a remarkably different behaviour in seemingly similar
geometries, like single files versus quasi-1D systems (2D stripes or 3D capillaries), infinite
3D systems versus 3D slit-like pores. This anomalous behaviour may range from sub-
diffusion to super-diffusion (see table 1).

For spatial dimension d > 1, an instantaneous position Xn at time n of the BI along
the direction of the applied bias (along the x-axis) can be represented as Xn = v n+ δXn,
where δXn is a random variable with zero mean. Via an approach which is exact in
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the lowest order in the density of vacancies, we have shown that despite this being
such a non-equilibrium and non-homogeneous situation, for infinite two-dimensional
systems the probability distribution of the random variable δXn converges to a zero-
mean Gaussian distribution as time n → ∞. The first large-n correction term to the
Gaussian distribution has also been determined, which enabled us to estimate the rate
of convergence to the asymptotic behaviour. We have found that the variance σ2

x of this
variable exhibits a weakly super-diffusive growth, σ2

x ∼ ν1 n ln(n), where the coefficient
ν1 has been determined exactly for arbitrary bias in the lowest order in the density of
vacancies in such a system. We have shown that ν1 ∼ F 2 for small pulling forces F , which
signifies that this weakly super-diffusive behaviour emerges beyond and thus cannot be
derived within the linear-response approximation. It was shown that in the direction
perpendicular to the bias (along the y-axis) the distribution of the BI displacement
converges to a Gaussian but the variance σ2

y exhibits an effectively diffusive growth,

σ2
y ∼ ν2n. The prefactor ν2 has also been defined exactly, for arbitrary bias, in the lowest

order in the density of vacancies.
Furthermore, capitalizing on our exact results for infinite two-dimensional systems,

we have presented some qualitative arguments, based on the analysis of the structure
of the exact results obtained, which allowed us to reproduce the behaviour obtained for
infinite 2D systems in the leading order in the density of vacancies and to conjecture the
behaviour of the variance σ2

x of the random variable δXn in several quasi-one-dimensional
geometries—infinitely long two-dimensional stripes and three-dimensional rectangular
capillaries. We realized that in such confined geometries the field-induced broadening
of fluctuations becomes much more pronounced and the variance shows a strongly super-
diffusive behaviour, σ2

x ∼ n3/2. Our analytical predictions are confirmed by Monte Carlo
simulations.

Pursuing our analysis further, we revisited a CTRW-like picture proposed previously
in [61]. We have shown that from the mathematical point of view, the super-diffusive
broadening of fluctuations of the BI trajectories in confined geometries arises due to
the fact that the key property in the CTRW picture—the discrete random process Nn

describing the number of jumps made by the BI during time interval n—appears to be
linked to a hidden random process, which behaves asymptotically as a super-diffusive
fractional Brownian motion (fBm) [70] with the Hurst index H = 3/4 for quasi-one-
dimensional geometries and contains an additional logarithmic factor for two-dimensional
and quasi-two-dimensional systems. In these situations, this process governs the long-time
behaviour of the variance of Nn in O(ρ0). From the physical point of view, the mechanism
underlying this super-diffusive fBm-type process emerging in confined geometries is
associated with persistent recurrent returns to the BI location of the vacancies which
have interacted once with the BI. Therefore, we argued that the BI dynamics represents a
rather interesting combination of two different kinds of stochastic processes—CTRW-type
and fBm-type processes.

Finally, we have presented the results of Monte Carlo simulations of the dynamics of
a biased intruder in a strictly one-dimensional lattice gas of unbiased hard-core particles,
i.e., in the so-called single-file lattice gas. We have shown that the variance σ2

x of the
random variable δXn (defined now via Xn = ν

√
n + δXn) grows in proportion to

√
n,

precisely in the way that it does in the case of an unbiased intruder. Moreover, we
demonstrated that even the prefactor in this growth law appears to be independent of the
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magnitude of the external bias. Also, we have shown that the kurtosis of the distribution
of δXn vanishes as n→∞, which signifies that this distribution becomes Gaussian in the
long-time limit. Analytical analysis of the biased diffusion in single-file lattice gas will be
presented elsewhere [69].
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