
Microscopic Theory for the Diffusion of an Active Particle in a Crowded Environment

Pierre Rizkallah,1 Alessandro Sarracino ,2 Olivier Bénichou,3 and Pierre Illien1
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4 Place Jussieu, 75005 Paris, France
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3Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC),

4 Place Jussieu, 75005 Paris, France

(Received 9 July 2021; accepted 13 December 2021; published 19 January 2022)

We calculate the diffusion coefficient of an active tracer in a schematic crowded environment,
represented as a lattice gas of passive particles with hardcore interactions. Starting from the master
equation of the problem, we put forward a closure approximation that goes beyond trivial mean field and
provides the diffusion coefficient for an arbitrary density of crowders in the system. We show that our
approximation is accurate for a very wide range of parameters, and that it correctly captures numerous
nonequilibrium effects, which are the signature of the activity in the system. In addition to the
determination of the diffusion coefficient of the tracer, our approach allows us to characterize the
perturbation of the environment induced by the displacement of the active tracer. Finally, we consider
the asymptotic regimes of low and high densities, in which the expression of the diffusion coefficient of the
tracer becomes explicit, and which we argue to be exact.
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Introduction.—Many theoretical models of active par-
ticles have been introduced and studied during the past
decades. They were proven to be particularly powerful to
describe the dynamics of a large number of real systems,
ranging from biological objects (molecular motors, bac-
teria, micro-swimmers, algae...) to artificial self-propelled
particles such as active colloids [1,2]. Among these models,
run-and-tumble particles and active Brownian particles
have attracted a lot of interest: in both cases, the particles
self-propel with a fixed velocity, whose orientation changes
randomly either abruptly or continuously, respectively. The
dynamics of isolated or noninteracting active particles has
been the subject of numerous recent studies [3–11].
Beyond single-particle properties, the dynamics of active

particles when they interact with each other has attracted a
lot of attention, and was shown to display numerous
surprising effects, such as large-scale collective motion
[12], clustering, or phase separation in the absence of
attractive interactions [1,13]. In addition, it is crucial to
understand the interactions between active particles and
complex environments. Indeed, the transport of many
biological objects takes place under crowded conditions,
such as motor proteins inside a cell [14] or bacteria in
porous materials [15]. So far, the transport of active
particles in frozen disordered environments was studied
through experiments (on living [16–20] and synthetic [21]
microswimmers) and theoretical approaches (essentially
numerical) [4,22–32].
The case of dynamic disorder, which has received much

less attention, is, however, particularly relevant, since

thermal fluctuations generally affect the environment as
well as the tracer [33]. Models involving tracers in
environments of mobile obstacles (Fig. 1) have therefore
been employed to describe situations of biological interest
[34–36]. For the case of a passive tracer, the celebrated
theory by Nakazato and Kitahara [37] (see also
Refs. [38,39]) gives an expression of the corresponding
diffusion coefficient as a function of the density of
crowders, in a continuous-time description. Because of
the many-body nature of the problem, this expression is
approximate but has been shown to be exact in the low and
high density regimes, and offers very good quantitative
estimates for arbitrary density, as soon as the environment
is mobile enough [38,39]. The case of an active tracer in a
dynamic environment has been the subject of only a few
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FIG. 1. An active tracer performs a persistent random walk
(here, the active force initially points in direction þe1, which
corresponds to χ ¼ 1) in a bath of particles performing symmetric
random walks (see text for notations). The orientation of the bias
of the tracer changes randomly, and the reorientation events are
represented by stars.
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theoretical studies of particles evolving on a lattice (see,
however, Ref. [40] for a very recent mode-coupling
approach in continuous space), which focused mainly on
the low-density limit of the problem, with a discrete-time
description, with a tracer that never jumps sideways from the
direction of propulsion, and with a specific dynamics [41].
Particular interactions between particles (third-neighbor
exclusion) have also been studied through numerical simu-
lations and mean-field approximations [42]. A generic
analytical framework, which would allow the calculation
of the diffusivity of an active tracer in a dynamic environment
for a wide range of parameters, and in particular for arbitrary
density, is missing. Indeed, although discrete space models
for the diffusion of tracers have attracted a lot of attention and
have proven particularly efficient to characterize dynamics in
crowded environments, there is no continuous-time lattice
model that incorporates both the effect of activity and that of
crowding at arbitrary density, and that quantifies tracer-bath
correlations.
In this Letter, we provide a microscopic theory for the

diffusion coefficient of an active tracer in a crowded
environment on a lattice, at arbitrary density and activity.
Adopting a standard continuous-time dynamics and start-
ing from the master equation describing the joint proba-
bility distribution for the position of the tracer and the
configuration of its environment, we resort to a closure
approximation and calculate the diffusion coefficient of the
active tracer in terms of the bath density profiles, and of
tracer-bath correlation functions. Importantly, in addition to
the determination of the diffusion coefficient of the tracer,
our approach allows us to calculate the perturbation of the
environment due to the displacement of the active tracer,
and the space dependence of the correlations between the
tracer position and the bath occupation numbers. Finally,
the expression for the diffusion coefficient becomes explicit
in the low- and high-density regimes, in which we claim
that our closure approximation becomes exact.
Model.—We consider an active tracer in a crowded and

dynamic environment (Fig. 1). The bath particles (of
density ρ), and the tracer evolve on a d-dimensional cubic
lattice, whose spacing is taken equal to 1. As opposed to
discrete-time descriptions [41], the system evolves here in
continuous time, which is the natural and usual way to
describe systems with site-blocking effects, both in one
dimension as in (asymmetric) simple exclusion processes
[43,44] and in higher dimensions [37–39]. Note that the
dynamics of a biased tracer is known to be significantly
affected by the choice of dynamics (discrete time or
continuous time) [45]. The bath particles perform sym-
metric nearest-neighbor random walks (with characteristic
time τ�), and the tracer performs a random walk (with
characteristic time τ) biased in the direction of an active
force whose orientation changes randomly. The variable
χ ∈ f�1;…;�dg is the “state” of the tracer, i.e., the

direction in which the active force points. The tracer
switches from a state χ to any other state χ0 ≠ χ with rate
ðα=2dτ�Þ, where α is dimensionless. The persistence time is

then τα ¼ ð2dτ�=αÞ. We denote by pðχÞ
μ the probability for

the tracer to jump in direction μ ∈ f�1;…;�dg when it is
in state χ. Given that the active force is in a random

direction χ, we choose pðχÞ
μ ∝ exp½FAeχ · eμ=2� with an

appropriate normalization (where e�1;…; e�d are the
lattice unit vectors and we use the notation e−μ ¼ −eμ).
The active force FA is easily related to the velocity of the

tracer in the absence of crowding interactions v0 ¼ ðpð1Þ
1 −

pð1Þ
−1Þ=τ [46]. The dynamics of the tracer is a lattice

representation of run-and-tumble dynamics, which is a
central model in the theory of active matter, and which has
been widely used to describe the transport and diffusion of
bacteria, see, for instance, Ref. [7]. Finally, all the particles
evolve on the lattice with the restriction that there can
only be one particle per site, which mimics hardcore
interactions.
The state of the system at time t is described by

PχðR; η; tÞ, which is the joint probability to find the tracer
in state χ, at site R, with the lattice in configuration
η ¼ fηrg, where ηr ¼ 1 if site r is occupied by a bath
particle and 0 otherwise. The master equation obeyed by
the joint tracer-bath probability is

2dτ�∂tPχðR; η; tÞ ¼ LχPχ − αPχ þ
α

2d − 1

X
χ0≠χ

Pχ0 ; ð1Þ

where Lχ is the evolution operator in state χ and is given in
the Supplemental Material [47]. It accounts for the dif-
fusion of the tracer and of the bath particles, whereas the
last two terms of Eq. (1) account for the random changes in
the orientation of the active force.
At t ¼ 0, we assume that all the directions of the active

force are equally likely, in such a way that the mean position
of the tracer particle remains zero, and that at any time all
states have the same probability ð1=2dÞ. We are interested in
the fluctuations of the tracer position along one direction, for

instance,Xt ¼ Xt · e1 (where Xt ¼ Xte1 þ
P

d
k¼2 X

ðkÞ
t ek).

Multiplying the master equation by X2
t and averaging yields

an expression for the time derivative of hX2
t i, where h·i

denotes the average over the position of the tracer, its
state, and the configuration of the lattice. The long-
time diffusion coefficient of the tracer, defined as D≡
limt→∞

1
2
ðd=dtÞhX2

t i, can be written under the form [47]

D ¼ 1

4dτ

X
χ

X
ϵ¼�1

fpðχÞ
ϵ ½1 − kðχÞϵ � − 2ϵpðχÞ

ϵ g̃ðχÞϵ g

þ 2d − 1

2d
τ�

τ2α

X
χ

�X
ϵ¼�1

ϵpðχÞ
ϵ ½1 − kðχÞϵ �

�
2

: ð2Þ
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This expression involves the density profiles in the frame of

reference of the tracer kðχÞr ¼ hηXtþriχ and tracer-bath cross-
correlation functions g̃ðχÞr ¼ hηXtþrðXt − hXtiχÞiχ , where
h·iχ ¼ 2d

P
R;η ·PχðR; η; tÞ denotes the average conditioned

on state χ [48].
Decoupling approximation.—The equations governing

kðχÞr and g̃ðχÞr , which are obtained by multiplying the master
equation [Eq. (1)], respectively, by ηXtþr and XtηXtþr, are
not closed and involve higher-order correlation functions,
whose evolution equations involve even higher-order
correlation functions, and so on. The resulting infinite
hierarchy of equations is closed by the following

mean-field-type approximation: hηrηr0 iχ ≃ kðχÞr kðχÞr0 and

hδXtηrηr0 iχ ≃ kðχÞr g̃ðχÞr0 þ kðχÞr0 g̃
ðχÞ
r , which is obtained by writ-

ing each random variable as x ¼ hxi þ δx and neglecting
terms of order 2 and 3 in the fluctuations. Note that this
goes beyond trivial mean field, in which the mean occu-
pation of the lattice sites would be assumed to be uniform
and equal to ρ. This approximation has been successfully
applied to study the velocity [49] and diffusivity [50] of a
driven tracer (limit of α → 0) and has been shown to
become exact in the low- and high-density regimes [51].

We obtain the following equations for hðχÞr ≡ kðχÞr − ρ

(defined in such a way that limjrj→∞ hr ¼ 0) and g̃ðχÞr (we

adopt the convention hðχÞ0 ¼ g̃ðχÞ0 ¼ 0)

2dτ�∂th
ðχÞ
r ¼ðL̃ðχÞ þ

X
ν

AðχÞ
ν δr;eνÞhðχÞr

þ
X
ν

δr;eνρðAν−A−νÞ−αhðχÞr þ α

2d−1

X
χ0≠χ

hðχ
0Þ

r ;

ð3Þ

2dτ�∂tg̃
ðχÞ
r ¼

�
L̃ðχÞ þ

X
ν

AðχÞ
ν δr;eν

�
g̃ðχÞr þGðχÞhðχÞr −αg̃ðχÞr

þ α

2d− 1

X
χ0≠χ

g̃ðχ
0Þ

r þ
X
ν

δr;eν ½ðAðχÞ
−ν − 1Þρðeν · e1Þ

−
2dτ�

τ
ðpðχÞ

ν g̃ðχÞeν ðhðχÞeν þ ρÞ−ρpðχÞ
−ν g̃

ðχÞ
e−νÞ�; ð4Þ

where we define AðχÞ
μ ≡ 1þ ð2dτ�=τÞpðχÞ

μ ½1 − kðχÞeμ �, the

operator L̃ðχÞ acting on a test function fr as

L̃ðχÞfr ≡P
μ A

ðχÞ
μ ðfrþeμ − frÞ. The operator GðχÞ is defined

in Supplemental Material [47]. The sums over μ and ν
implicitly run over all 2d directions of the lattice.
Equations (3) and (4) constitute one of the main results
of our Letter: within our closure approximation, these

equations allows the determination of the quantities hðχÞr

and g̃ðχÞr , and therefore of the diffusion coefficient of the

tracer through Eq. (2), for an arbitrary set of parameters,
and in particular for an arbitrary density of crowders ρ.
Resolution.—The resolution of Eqs. (3) and (4) relies on

the translational invariance of the system, enabling us to use
Fourier transforms to invert the discrete-space differential
operator. We define the following Fourier transforms,
where the sum on r runs over lattice sites: HðχÞðq; tÞ≡P

r e
iq·rhðχÞr ðtÞ and GðχÞðq; tÞ≡P

r e
iq·rg̃ðχÞr ðtÞ. The Fourier

transforms of Eqs. (3) and (4) are given in the Supplemental
Material [47]. In the stationary state, these equations are
written under the form MðqÞHðqÞ þ RHðqÞ ¼ 0 and
MðqÞGðqÞ þ RGðqÞ ¼ 0, where we define the 2d-dimen-
sional vectors HðqÞ≡ ðHð1ÞðqÞ; Hð−1ÞðqÞ;…Þ and GðqÞ≡
ðGð1ÞðqÞ; Gð−1ÞðqÞ;…Þ. RH depends only on hðχÞeμ , and RG

depends on hðχÞeμ and g̃ðχÞeμ . MðqÞ is a matrix such that

½MðqÞ�χχ ¼ −αþP
μ ðe−iqμ − 1ÞAðχÞ

μ and the off-diagonal
terms are all α=ð2d − 1Þ, where we use the shorthand
notation qμ ≡ q · eμ. The matrix MðqÞ is invertible (for
q ≠ 0), and we deduce HðqÞ ¼ −MðqÞ−1RHðqÞ and
GðqÞ ¼ −MðqÞ−1RGðqÞ. Then, by performing inverse
Fourier transforms, we get a system satisfied by the

quantities hðχÞμ and g̃ðχÞμ [47]. This system makes it possible
to calculate, within our approximation scheme, the diffu-
sion coefficient for an arbitrary density of particles, with
arbitrary values of the parameters τ, τ�, FA, and α.
We first give the solution for a 2D infinite lattice. We

compute numerically the values of hðχÞμ and g̃ðχÞμ in the
stationary state from Eqs. (3) and (4) [47], and deduce the
value of the diffusion coefficient using Eq. (2). We study
the dependence of D on the density of particles on the
lattice ρ, for different values of τ, τ�, τα and FA. Figure 2
displays very good agreement between Monte Carlo sim-
ulations and our decoupling approximation. As in the
theory for a passive tracer [37], the accuracy of our
decoupling approximation improves when the crowding
environment is more mobile (typically τ�=τ ≲ 10) or when
the dimension of the lattice is higher. In the case when there
is no propulsion (FA ¼ 0), our approximation matches the
result by Nakazato and Kitahara [37], which provides an
explicit expression of the diffusion coefficient as a function
of the density, and which is recalled in Supplemental
Material [47]. Our result can therefore be seen as a
generalization of this classical result on tracer diffusion
in lattice gases to the case of an active particle. Note also
that in the limit of α → 0, we retrieve the results obtained
previously for the velocity and the diffusion coefficient of a
passive driven tracer [50].
This calculation can easily be extended to other lattice

geometries, provided that they remain translation invariant.
More specifically, we consider the case of a 2D stripelike
lattice (infinite in one direction and finite of width L with
periodic boundary conditions in the other direction), which
schematically mimics narrow channels and confined sys-
tems, and of a 3D infinite lattice (Fig. 2).
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Finally, we emphasize that our approach allows us to go
beyond the determination of the only diffusion coefficient
of the tracer, and gives access to the perturbation induced
by the activity of the tracer on its environment. More
precisely, we calculate the complete space dependence of
the density profiles hðχÞr and of the cross-correlation

functions g̃ðχÞr by performing inverse Fourier transforms
of HðχÞðq; tÞ and GðχÞðq; tÞ (Fig. 3). These quantities unveil
the interplay between the displacement of the active tracer
and the response of its environment—an aspect out-of-
reach of previous descriptions [52]. In particular, we
observe and quantify an accumulation of bath particles
in front of the tracer and a depletion behind it. This local
anisotropy of the environment of the tracer is a direct

consequence of its activity, and is fully accounted for by
our approach. We provide an analytical framework to
quantify the effect of active tracers on their environments,
which is a key problem of active matter, with promising
applications to use active tracers as microrheological
probes [53].
Nonmonotony on the parameters controlling activity.—

We now study the dependence of the diffusion coefficient
on the persistence time τα. The asymptotic limits τα → 0
and τα → ∞ are known: when the persistence time
becomes very small, the diffusion coefficient is finite
and equal to that of a passive tracer [37], while in the
limit of an infinitely persistent tracer, the diffusion coef-
ficient is expected to diverge (except in the specific limit of
fixed obstacles τ� → ∞). Our analysis reveals that the
diffusion coefficient can exhibit a nonmonotonic behavior
between these two limits, as previously observed in the
low-density limit [41]. This effect remains when τ�=τ < ∞,
but was only studied in the situation of an infinite active
force, i.e., in the limit where the tracer cannot step sideways
from its persistence direction [41]. Here, we go one step
further and study the effect of the active force for an
arbitrary density of crowders on the lattice. For a given
value of ρ and τ�=τ, the nonmonotony of the diffusion
coefficient persists as long as the active force is large
enough, as shown in Fig. 4. This effect results from the
competition between the different timescales governing the
diffusion of the tracer, and can be captured with simple
analytical arguments. A phase diagram, which represents the
critical value of τ�=τ above which D becomes a nonmono-
tonic function of τα (for givendensityρ and forceFA) is given
in Supplemental Material (Fig. S2) [47]. We also observe a
nonmonotony of the diffusion coefficient with the active
force FA, which is reminiscent of previous observations in
the case of an infinitely persistent tracer [50].
Low- and high-density regimes.—Finally, as shown in

Fig. 2, the decoupling approximation is accurate for the
whole range of density 0 ≤ ρ ≤ 1. In addition, we argue
that it becomes exact in the low- and high-density regimes,
that we explore here. This claim relies on the exactness of
(i) the theory of Nakazato-Kitahara in the case of sym-
metric passive tracer [37]; and (ii) the microscopic theory of
a driven passive tracer in these limits [50].

FIG. 2. Diffusion coefficient of an active tracer on a 2D lattice
(a),(b), a 3D lattice (c) and a 2D capillary of width L ¼ 3 (d), as a
function of the density ρ, for several values of the active force FA
and the persistence time τα. Symbols: Monte Carlo simulations
[47]. Solid lines: analytical approach [Eqs. (2), (3), and (4)].
Dotted lines: asymptotic expansion in the low-density regime.
Dashed lines: case of a passive tracer [37].

FIG. 3. (a) Density profiles (conditioned on the activity being in
state χ ¼ 1) and (b) tracer-bath correlation functions (averaged on
all the states) as a function of the distance to the tracer, on a 2D
lattice. The values of the forces FA, respectively, correspond to

transition probabilities pð1Þ
1 ¼ 0.39, 0.67, and 0.99. Symbols:

Monte Carlo simulations. Solid lines: analytical approach.
FIG. 4. Nonmonotony ofD as a function of the persistence time
τα, at density ρ ¼ 0.1 (a) and ρ ¼ 0.99 (b).
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We expand the density profiles hðχÞμ and the correlation

functions g̃ðχÞμ in the limits of ρ → 0 and ρ → 1. In these
limits, the diffusion coefficient of the tracer is expanded as
D ¼ D0 þ ρD0 þOðρ2Þ (respectively D ¼ ð1 − ρÞD1þ
O½ð1 − ρÞ2�), where the expressions of D0 and D0 (respec-
tively D1) are expressed in terms of the leading order

expressions of the coefficients hðχÞμ and g̃ðχÞμ in the low-
density (respectively high-density) limit. The latter are found
to be solutions of linear systems. These solutions, together
with the expansions ofD, yields an explicit expression of the
diffusion coefficient of the tracer in terms of all the
parameters of the problem in these regimes (see Secs. IX
and XI of the Supplemental Material [47] and Fig. 2).
In the low-density limit, this result is the continuous-time

counterpart of previous low-density approaches, which
relied on a specific dynamics. A comparison between
the results from our decoupling approximation and the
results from Ref. [41] is given in Supplemental Material
[47]. Since the two dynamics are different, the two
calculations of the diffusion coefficient do not match
quantitatively, but display a good qualitative agreement.
These expansions give fully explicit expressions of the

diffusion coefficient both in the low- and high-density
regimes, which we furthermore argue to be exact. Indeed,
in both limits of a driven tracer (τα → ∞) and of a passive
tracer (τα → 0), a similar decoupling approximation was
compared to exact approaches that focused (i) on the low-
density limit, in which the diffusion of the tracer is seen as a
succession of scattering events due to interactions with
independent obstacles (at leading order in ρ) [54,55]; (ii) on
the high-density limit, in which the diffusion of the tracer is
mediated by the diffusion of vacancies, which explore the
lattice independently (at leading order in 1 − ρ) [56–60].
This, together with the very good agreement between the
decoupling approximation and numerical results, points
towards the exactness of the present approximation.
Showing such exactness would require us to obtain exact
results for the diffusion of an active tracer using the methods
mentioned above, and thiswill be investigated in futurework.
We hope that the present approach will allow us to

establish connections with recent experimental observa-
tions on living organisms [15,61] or self-propelled particles
[53] in crowded environments. Moreover, it will be
technically challenging but particularly interesting to study
the opposite situation of a passive tracer in a dense active
environment—a situation that has recently been the object
of theoretical approaches [40].
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