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Spontaneous propulsion of an isotropic colloid in a phase-separating environment
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The motion of active colloids is generally achieved through their anisotropy, as exemplified by Janus colloids.
Recently, there was a growing interest in the propulsion of isotropic colloids, which requires some local
symmetry breaking. Although several mechanisms for such propulsion were proposed, little is known about
the role played by the interactions within the environment of the colloid, which can have a dramatic effect
on its propulsion. Here, we propose a minimal model of an isotropic colloid in a bath of solute particles that
interact with each other. These interactions lead to a spontaneous phase transition close to the colloid, to directed
motion of the colloid over very long timescales and to significantly enhanced diffusion, in spite of the crowding
induced by solute particles. We determine the range of parameters where this effect is observable in the model,
and we propose an effective Langevin equation that accounts for it and allows one to determine the different
contributions at stake in self-propulsion and enhanced diffusion.
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I. INTRODUCTION

Synthetic self-propelled particles, like active colloids, have
been the subject of numerous theoretical and experimental
studies during recent decades [1–3]. Among the possible
routes to locomotion, the design of anisotropic colloids, which
interact with self-generated gradients of solute concentration,
temperature, or electric fields, has been particularly fruitful.
This is exemplified by Janus colloids, whose hemispheres
have different surface properties, for instance, a catalytic and
a noncatalytic one [4–8].

There was a more recent interest in the propulsion of
isotropic colloids. It was demonstrated that built-in asymme-
try of the colloid is actually not necessary to achieve directed
motion over long timescales and that a spontaneous polariza-
tion of its environment can be sufficient. For instance, one can
consider isotropic colloids, which interact with solute parti-
cles that are continuously and isotropically emitted from their
surface, in such a way that the number of solute particles is
not conserved. Spontaneous fluctuations in the solute density
field can yield transient anomalous diffusion of the colloid and
enhanced diffusion [9–11]. Spontaneous symmetry breaking
can also arise from the nonlinear coupling between the solute
density and the flows at the surface of the colloid [12–15], an
effect which was evidenced experimentally with large water
droplets in an oil-surfactant medium [16–20]. Alternatively,
models where the number of solute particles is conserved
were considered. If the surface of the colloid plays the role
of a catalyst and if the colloid interacts differently with the
reactants and the products, propulsion can also be achieved
under suitable conditions [21].

However, in the modeling of these isotropic self-propelled
colloids, the interactions between the solute particles are gen-
erally not taken into account, although they play a significant

role on the propulsion mechanism and on the displacement
of the colloid when self-propulsion occurs. This aspect be-
comes particularly important when such processes take place
in dense environments, for instance, in confined geometries
or in the intracellular medium. In the latter case, interactions
can lead to liquid-liquid phase separations and thus to strong
discontinuities in solute density gradients [22]. However, if
the solute density increases significantly in the vicinity of a
colloidal particle, solute particles may as well slow down its
diffusion, as in a crowded medium. Therefore, it is necessary
to adopt a finer level of description for the environment of
active colloids, in order to understand the effect of solute-
solute interactions on their dynamics, especially when these
interactions may drive a phase transition. Local phase sepa-
ration was previously used to induce the motion of colloids:
When illuminated by light, gold-capped Janus colloids can
trigger a local asymmetric demixing of a binary water-lutidine
mixture, responsible for self-diffusiophoretic motion [23,24].
However, our goal here is to study the self-propulsion of an
isotropic colloid, in the particular situation where the particles
whose density fluctuations are responsible for its displace-
ment, that we will call hereafter “solute particles,” that have
a size comparable to that of the colloid, and that therefore
induce crowding that may hinder the displacement of the
colloid.

To this end, we propose and numerically study a model
for an isotropic colloid in a bath of solute particles that in-
teract with each other. We investigate how the interactions
within the environment of the colloid—and not only those be-
tween the colloid and its environment—control the propulsion
of the colloid. Our strategy consists in designing the sim-
plest out-of-equilibrium model where interactions can lead
to a local phase transition close to the colloid. Far from the
colloid, the solute particles are of type A and interact via
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FIG. 1. Snapshot of the system: N = 500 solute particles and
a colloid C (orange) in a periodic square box. Enlargement of the
colloid where the reaction A + C → B + C takes place in the reac-
tion area of radius rcut. A particles are in violet, and B are in green.
A particles interact with purely repulsive interactions, whereas the
interactions between B particles are attractive (Lennard-Jones). The
interactions between the colloid and the solute particles are repulsive.
The red circle represents the domain P within which the colloid may
interact directly with solute particles.

purely repulsive interactions. Within a given cutoff distance
from the center of the colloid, the reaction A → B takes
place, and we assume that interactions between the solute
particles of type B are attractive (see Fig. 1). If the attraction is
strong enough, there can be a local phase transition of B. The
two phases can coexist for a long time in the reaction area,
thus making the environment of the colloid strongly inhomo-
geneous. Such minimal model could represent a variety of
biological systems, including two-state proteins (A/B), whose
conformation and/or phosphorylation state changes close to a
larger microscopic structure, such as a ribosome or a vesicle.

We show that this local phase transition and the resulting
inhomogeneities trigger self-propulsion of the colloid, and we
quantify the resulting enhanced diffusion. Finally, relying on
an analysis of the Brownian dynamics trajectories, we propose
an effective Langevin equation to describe the dynamics of the
colloid and its propulsion mechanism. This effective Langevin
equation, which is derived from the microscopic dynamics,
is compared to the equations of motion which are usually
postulated in active matter theory.

II. MODEL

We consider a two-dimensional suspension of N solute
particles of diameter σA and one colloid of diameter σC em-
bedded in an implicit solvent, in a square box of size L,
with periodic boundary conditions. σA is chosen as the unit
length, and the diameter of the colloid is σC = 5σA. The
number density of the solute is ρ = N/L2, and will be fixed to
0.1 (with N = 500 particles) in all the simulations presented
here. This corresponds to a solute surface fraction φ � 0.079.
When a particle of type A is at a distance smaller than a
cutoff distance rcut from the center of the colloid, it becomes
B with rate kAB (Fig. 1). Conversely, outside this reactive
area, B transforms back into A with rate kBA. This reverse
reaction maintains the system out of equilibrium and mimics

the flux of B away from the colloid in a system where the
A species remain predominant. In all the simulations pre-
sented in the main text, we take kAB = kBA = 10τ−1, where
τ = σ 2

A/DA is the typical time taken by a solute molecule to
diffuse over its own size and is chosen to be the unit time of
the model. In this way, the typical A ↔ B conversion times
are small compared to the other timescales of the problem.
The C–A, C–B, and A–A interactions are purely repulsive
and are described with the Weeks-Chandler-Andersen (WCA)
potential UWCA(ri j ) = 4ε′[( di j

ri j
)12 − ( di j

ri j
)6] + ε′, where ri j is

the distance between particles i and j, di j = (σA + σC )/2 if
i or j is the colloid, and di j = σA otherwise [25]. The WCA
potential is equal to zero for ri j � 21/6di j . The B particles
have the same diameter as A, but interact with each other
via a Lennard-Jones (LJ) potential, i.e., with an attractive
part: ULJ(ri j ) = 4ε[( σA

ri j
)12 − ( σA

ri j
)6]. We set ε′ = 10kBT , and

ε, which tunes the intensity of the attraction between B par-
ticles, varies from kBT to 3kBT , which are typical values for
nonspecific protein-protein interactions [26]. We do not aim
at considering the effect of long-range interactions in this
system, and therefore we impose the LJ potential to vanish
for ri j � 2.5di j .

We simulate the system using Brownian dynamics [27].
The positions of each of the N + 1 particles in the system
satisfy the overdamped Langevin equations:

dri

dt
= − Di

kBT

∑
j �=i

∇Ui j (|ri − r j |) +
√

2Diηi(t ), (1)

where Di ∝ 1/σi is the bare diffusion coefficient of par-
ticle i, and ηi(t ) is a white noise such that 〈ηi,α (t )〉 = 0
and 〈ηi,α (t )η j,β (t ′)〉 = 2Diδi jδαβδ(t − t ′) for any components
α, β = x or y. We integrate them with a forward Euler scheme
(Appendix A). All the equations are made dimensionless ac-
cordingly. The integration time step δt varies between 10−4τ

and 10−5τ , and we integrate the equations over at least 1.5 ×
106 time steps. The values of all the simulation parameters are
given in Appendix A.

III. ENHANCED DIFFUSION

We observe that when the reaction A → B takes place
in the vicinity of the colloid, its diffusion can be signifi-
cantly enhanced compared to its equilibrium value, in spite
of the crowding imposed by the solute particles. In or-
der to quantify the diffusion enhancement, we calculate the
mean squared displacement (MSD) of the colloid �r2

C(t ) =
〈[rC(t ) − rC(0)]2〉, where the average runs over initial con-
ditions and noise realizations. Its dependence on time for
different sizes of the reaction area is represented in Fig. 2.
We observe that, at long times, the slope of the MSD in-
creases with the size of the reaction area rcut and with the
intensity of the Lennard-Jones potential ε. We define the dif-
fusion coefficient as D ≡ limt→∞ �r2

C(t )/4t , and we show in
Appendix B the dependence of D over rcut and ε. In par-
ticular, we measure Dε=3/Deq � 5.5 (for rcut = 7.5, Fig. 2
left), where Deq is the reference diffusion coefficient without
reaction, and Drcut=10.5/Deq � 9.8 (for ε = 3, Fig. 2 right).
Therefore, the diffusion coefficient of the colloid can be in-
creased up to tenfold when the colloid catalyzes the A → B
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FIG. 2. Mean squared displacement of the colloid for fixed
rcut = 7.5 and different values of ε (left); and fixed ε = 3 and different
values of rcut (right). Solid lines are guides for the eye.

reaction. This diffusion enhancement, although it is smaller
than those typically observed for anisotropic colloids, is par-
ticularly significant given that the colloid is isotropic, that
activity is not fuelled by a significant external energy input,
and that this enhancement occurs in spite of the crowding
induced by solute particles, that would on the contrary tend
to hinder the displacement of the colloid in a purely passive
system.

We also consider the situation where all the solute particles
are of type B and interact via the LJ potential (i.e., the limit
of rcut → ∞). We observe that Drcut=∞ becomes comparable
to Deq (Drcut=∞/Deq � 1.4 for ε = 3) [28]. This suggests that,
interestingly, for a fixed value of the parameter ε, there ex-
ists a value of rcut that optimizes the diffusion coefficient of
the colloid. Finally, when ε is too large, we expect the B
solute particles to form a dense crystal around the colloid
and to significantly hinder the displacement of the colloid
(Appendix C).

Qualitatively, the diffusion enhancement can be attributed
to the following mechanism. When ε and/or rcut are large
enough, the B particles present in the reactive area around
the colloid attract each other and form a cluster (Fig. 1), but
this cluster does not fully fill the reactive area. The colloid is
pushed away from the cluster due to its repulsive interactions
with the solute particles. If the cluster keeps the same orien-
tation relatively to the colloid for a sufficiently long time, this
results in a propulsion of the colloid that eventually crosses

over to enhanced diffusion for observation times larger than
the persistence time of the cluster orientation.

The signature of this propulsion mechanism can be seen
when plotting the MSD of the colloid in a log-log scale
[Fig. 3(b)]. Three successive regimes can be identified. At
short times, the colloid has a diffusive behavior. At times
�10τ , the motion is almost ballistic, which is a signature of
the self-propulsion of the colloid. Finally, at times �100τ ,
the MSD crosses over to an ultimate diffusive regime, with
a significant diffusion enhancement.

IV. EFFECTIVE EQUATION OF MOTION

In order to get better insight into the self-propulsion of the
colloid, we aim at coarse graining the microscopic dynamics
and writing an effective Langevin equation for the position
of the colloid. We define p = ∑

i∈P [ri(t ) − rC(t )], where P
is the circular zone around the colloid, where it may interact
directly with solute particles (see Fig. 1). p represents the
polarization of solute particles around the colloid. We write
the velocity of the colloid under the form

d

dt
rC = −K p + ξ. (2)

The first term −K p represents the direct interactions of the
colloid with nearby solute particles and plays the role of an
effective “active force,” originating from the local polarization
of the environment of the colloid. The second term ξ is an
effective noise term, which is built with the constraint that
its fluctuations are faster than those of the active force. The
timescale characterizing the active force is defined below.

Integrating Eq. (2), squaring it, and averaging over realiza-
tions yields the MSD of the colloid, which reads〈

[rC(t ) − rC(0)]2
〉 = K2�pp(t ) + �ξξ (t )

− K[�pξ (t ) + �ξp(t )], (3)

where we define �ab(t ) ≡ ∫ t
0 dt ′ ∫ t

0 dt ′′〈a(t ′) · b(t ′′)〉. The
MSD of the colloid is therefore written in terms of the inte-
grals of different correlation functions.

In order to identify the different contributions to this
MSD, we first study the autocorrelation of the polarization

FIG. 3. (a) Autocorrelation of the polarization vector p and (c) cross correlations between p and ξ as function of time for different values
of the parameters ε and rcut. The legend is the same for both plots and given on panel (c). In the absence of reaction, the autocorrelation of
p decreases very fast and oscillates around zero. Inset of panel (a): Enlargement of the short-time dynamics, represented in a log-log scale.
(b) Mean squared displacement of the colloid as a function of time, and contributions defined in Eq. (3), for ε = 3 and rcut = 10.5. The
parameters for the analysis of the Brownian dynamics trajectories (b) are K = 0.0425τ−1 and τ0 = 0.3τp = 49.5τ .
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〈p(0) · p(t )〉, which is represented on Fig. 3(a) for different
sets of parameters ε and rcut. When the reaction A → B takes
place, this autocorrelation function typically displays two
regimes: a power-law decay at short times and exponential
decay at long times [Fig. 3(a)]. Interestingly, the exponential
tail is not observed in the absence of reaction, i.e., when
the colloid is surrounded by a homogeneous suspension of
A particles, so that this exponential decay can then be seen
as a signature of activity. We define a time τp, which char-
acterizes the persistence of the orientation of p, and which
is such that 〈p(0) · p(t )〉 ∝ e−t/τp at times sufficiently large
(see Appendix D for the values of τp associated to the set of
parameters in Fig. 3). The persistence time τp is an increasing
function of rcut for a fixed value of ε. Finally, computing
�pp(t ) ≡ ∫ t

0 dt ′ ∫ t
0 dt ′′〈p(t ′) · p(t ′′)〉 from the numerical data

shows that the contribution from the autocorrelation of the
solute polarization is responsible for the transient ballistic
behavior of the colloid [Fig. 3(b)].

We then study the contribution to the MSD coming from
the correlations of ξ, which is calculated from the trajectories
as ξ = K p + drC

dt . We evaluate the derivative of the position as
drC
dt � �rC

�t , with a sufficiently small time step �t . The coef-
ficient K is estimated by averaging Eq. (2) over a timescale
τ0 which is sufficiently large to yield 〈ξ〉τ0 � 0 (where 〈·〉τ0

is a running average of duration τ0), but that remains small
or comparable to the persistence time of the polarization
τp. In this way, p and v remain approximately aligned
over the timescale τ0. From the simulations, K is measured
as K = 〈K (t )〉t with K (t ) = −〈p(t )〉τ0 · 〈v(t )〉τ0/|〈p(t )〉τ0 |2,
where v = �rC

�t is the instantaneous velocity of the colloid.
We fix τ0 � 0.4τp. With this choice, we observe that (i) the
contribution of the cross correlations of p and ξ [Fig. 3(c)]
to the MSD of the colloid [last term in the right-hand side
of Eq. (2)] is negligible (Appendix E) and (ii) the autocorre-
lation of ξ only varies on a timescale very small compared
to all the other timescales of the problem, and in particular
to τp (Appendix F). K can also be estimated from analyt-
ical considerations, and we provide an order of magnitude
estimate which matches quantitatively the numerical estimate
(Appendix G).

Equation (2) can be understood as an effective Langevin
equation for the colloid, where the correlations between p and
ξ do not contribute to the MSD of the colloid. This equation
separates the effect of the solute particles in two contributions
that participate almost independently to the diffusion of the
colloid: an effective active force which directly controls the
motion of the colloid, and an effective bath. Finally, we can
compute �ξξ from the autocorrelation function of ξ. This
contribution is represented on Fig. 3(b). It remains linear at
all times and dominates the dynamics of the colloid at short
times and as long as the effect of local polarization is not felt
by the colloid. At times longer than 10τ , the colloid begins to
self-propel, and the contribution from p becomes dominant.
The MSD that can be reconstructed from the contributions
we have identified perfectly matches the MSD calculated
directly from the N-body simulations [Fig. 3(b)]. We show
in Appendix E that the cross correlations between p and ξ
lead to a negligible contribution to the MSD. Remarkably,
the contribution �pp(t ) perfectly matches the MSD computed
from simulation at long times, and the contribution �ξξ (t )

perfectly matches the MSD computed from simulation at short
times.

As a final remark, we comment on the relation between our
effective Langevin equation [Eq. (2)] and the usual description
of active Brownian particles (ABP), which are widely used in
active matter theory [1]. The dynamics of these particles is
typically described by an overdamped Langevin equation of
the form ṙ = v0n + ζ, where v0 is the propulsion velocity, ζ is
a white noise term, and n is the orientation of the particle,
which fluctuates with time. In most cases, this orientation
is assumed to have exponential correlations: 〈n(0) · n(t )〉 ∼
e−Drt . In this perspective, it is interesting to notice that Eq. (2)
bears a similar structure. However, importantly, this equation
and the parameters −K and τp (which play roles analogous
to v0 and D−1

r in ABP models) emerge from microscopic
considerations and are not postulated a priori. Moreover, our
analysis also provides an example for a propulsion mechanism
where the orientation dynamics is more complicated than
purely exponential, with a combination of different regimes,
as shown in Fig. 3(a).

V. CONCLUSION

We have presented here a minimal model for a self-
propelled isotropic colloid in a bath of solute particles. The
self-propulsion relies on a local phase transition of the solute
particles, which attract each other when they are close to the
colloid. When two solute phases coexist in the vicinity of
the colloid, its local environment becomes strongly polarized,
and triggers self-propulsion over long timescales, ultimately
enhancing diffusion. We determine numerically the range of
parameters where this effect emerges. The originality of our
model relies on the fact that we account for the interactions
within the environment of the colloid, a feature which is
usually absent in the theoretical modeling of isotropic active
colloids and which is here responsible for the propulsion
mechanism. From the analysis of the Brownian dynamics
trajectories, we propose an effective Langevin equation for
the dynamics of the colloid, which is compared to the usual
models of active Brownian particles.

Among the different perspectives opened by the present
work, it will be particularly interesting to consider (i) such
colloids in inhomogeneous environments or under confine-
ment [29], which will affect the polarization of the solute
particles around the colloid and its propulsion; (ii) the effect
of hydrodynamic interactions, which have been shown to have
a dramatic effect on the collective dynamics of active colloids
[30–32]; (iii) situations where the phase separation is not
driven by interparticle interactions but by mixing particles in
contact with different thermostats [33–36]; and (iv) possible
connections with recent analytical theories for chemio- or
diffusiophoresis of active swimmers [37,38].

APPENDIX A: BROWNIAN DYNAMICS ALGORITHM
AND IMPLEMENTATION

The overdamped Langevin equation that describes the dy-
namics of a solute particle i interacting with particles j in the
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TABLE I. Parameters of the simulated systems in the cases where activity was observed.

ε = 2 ε = 2.5 ε = 3

rcut 5.5 6.5 7.5 8.25 9.0 10.5 5.5 6.5 7.5 8.25 9.0 10.5 5.5 6.5 7.5 8.25 9.0 10.5
τstationary 110 112 140 173 188 245 60 123 115 138 147 156 67 98 91 94 94 109
〈N〉 8 14 23 31 39 59 8 16 28 38 49 73 9 18 30 41 52 78
τtotal 750 750 1350 1350 2400 1650 750 750 1500 1200 2400 2550 750 750 1500 1350 2400 2700

presence of a solvent bath is written as

vi(t ) = − Di

kBT

∑
i �= j

∇U (ri − r j ) +
√

2Dηi(t ), (A1)

where vi is the velocity of i, U is the pair interaction potential
between solutes, Di is the diffusion coefficient of i at infinite
dilution, and ηi is a white noise. (A1) can be directly inte-
grated with the Euler scheme into

ri(t + �t ) = ri(t ) − Di

kBT

∑
i �= j

∇U (ri − r j )�t

+
∫ t+�t

t

√
2Dηi(t

′) dt ′, (A2)

where B(�t ) = ∫ t+�t
t

√
2Dηi(t

′) dt ′ is the Gaussian

random variable with variance 〈B2〉 = 2D
∫ t+�t

t

∫ t+�t
t〈ηi(t

′)ηi(t
′′)〉 dt ′ dt ′′ = 2D�t . The following equation of

motion is thus iteratively used to compute the successive
positions of solutes included in the square simulation box
with periodic boundary conditions, starting from a random
initial configuration of solute particles

ri(t + �t ) = ri(t ) − Di

kBT

∑
i �= j

∇U (ri − r j )�t +
√

2D�tηi.

(A3)

As interactions are short ranged, we use a cell list algorithm
to compute them that reduces the algorithm order to N , as
described in Ref. [27].

The system consists of a large colloid C of diameter σC

surrounded by N small solutes A and B of same diameter
σA. N = NA + NB is fixed to N = 500. We take σC = 5σA

and DC = 1
5 DA. The simulation box has the fixed size Lbox =

70σA. The colloid is assumed to catalyze isotropically the
reaction A + C → B + C inside an area of radius rcut. At
each time step of the simulation, the distance r from the center
of the colloid of each A particle is computed. If it is smaller
than rcut, A becomes B with a probability equal to �tkAB with
�t being the simulation time step. Also, the distances of B
particles to the center of the colloid are computed at each time
step. B becomes an A particle with a probability �tkBA if the
distance is larger than rcut. We take kAB = kBA = 10τ−1.

The simulation procedure is the following. First, the system
that contains only A particles without any reaction is equili-
brated for about 10τ . Then, 1000 independent configurations
of this system are taken as initial configurations for runs
where the chemical reaction occurs. It takes some time for
the system with reaction to reach a stationary state, depending
on the value of the parameters rcut and ε. A stationary state

is assumed to be reached when the number of B particles at
a distance from the center of C smaller than rcut is almost
constant. The characteristic times τstationary needed to reach
that state, the values of the average number of particles in the
reaction area, and the total simulation times are collected in
Table I for systems where an activity was observed.

Once a stationary state is reached, the radial distribution
functions, the polarization vector p as a function of time, and
the mean squared displacements of C are computed as aver-
ages over the independent realizations. The total simulation
time τtotal also depends on the parameters: It is long enough
to ensure that a regular diffusion behavior is recovered in the
case where activity is observed.

APPENDIX B: DEPENDENCE OF D OVER ε AND rcut

We show in Fig. 4 the dependence of D over ε and rcut (the
values are obtained from the MSD data shown on Fig. 2).

APPENDIX C: ADDITIONAL SNAPSHOT: COLLOID
SURROUNDED BY A DENSE CRYSTAL OF SOLUTE

We expect that, for a given value of the density, when
ε is too large, the diffusion enhancement effect cannot be
observed as the B solute particles form a dense crystal around
the colloid and hinder the colloid. We show such a situation in
Fig. 5.

APPENDIX D: VALUES OF THE PERSISTENCE TIME τp

The values of the persistence time τp for the different sets
of parameters used in Fig. 3(b) are given in Table II.

FIG. 4. Diffusion coefficient as a function of the parameters ε

and rcut (obtained from the MSD data shown in Fig. 2).
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FIG. 5. Snapshot of a system displaying a dense cluster of solute
particles around the colloid in the stationary state (ρ = 0.3, ε = 3).

APPENDIX E: CONTRIBUTIONS TO THE MSD DEDUCED
FROM THE EFFECTIVE LANGEVIN EQUATION

We show in Fig. 6 the mean squared displacement of the
colloid as a function of time, and contributions in Eq. (3), for
ε = 3 and rcut = 10.5.

APPENDIX F: AUTOCORRELATION OF ξ

We show in Fig. 7 the autocorrelation of ξ as a function of
time for different values of the parameters ε and rcut.

APPENDIX G: ANALYTICAL ESTIMATE
OF THE COEFFICIENT K

The coefficient K , that appears in the effective Langevin
equation in the main text [Eq. (2)] can also be estimated from
analytical arguments. The velocity of the colloid (averaged
over a duration comparable to the persistence time of the
trajectory) can be estimated as

v = μC

∫
r∈P

dr c(r)∇U (r), (G1)

where μC = DC/kBT is the mobility of the colloid, c(r) is the
concentration of solute particles measured from the center of
the colloid, and U is the WCA potential acting between the
colloid and the solute particles. The integral is therefore an
estimate of the net force acting on the colloid. Using polar
coordinates centered on the colloid, assuming that the solute
concentration can be written as c(r, θ ) � C(θ )e−U (r)/kBT , and
performing integration by parts, we find that

v = −D0

[∫ ∞

0
dr (1 − e−U (r)/kBT )

] ∫ π

−π

dθ C(θ )er . (G2)

TABLE II. Values of the persistence time τp for the different sets
of parameters used in Fig. 3(b).

ε = 2.5 ε = 3

rcut 5.5 9 10.5 5.5 9 10.5
τp 39 98 187 49 105 165

FIG. 6. Mean squared displacement of the colloid as a function
of time, and contributions in Eq. (3), for ε = 3 and rcut = 10.5.

Similarly, the polarization can be estimated as p � ∫
P dr c(r).

Under the same assumption, one gets

p �
[∫ R+δ

R
dr r2e−U (r)/kBT

] ∫ π

−π

dθ C(θ )er . (G3)

The coefficient K can be estimated as

K = D0
∫ ∞

0 dr (1 − e−U (r)/kBT )∫ R+δ

R dr r2e−U (r)/kBT
. (G4)

With the parameters used in numerical simulations, we find
K � 0.037τ−1, whose order of magnitude matches correctly
the numerical observations (K = 0.0425τ−1; see caption of
Fig. 3 in the main text).

FIG. 7. Autocorrelation of ξ as a function of time for different
values of the parameters ε and rcut.
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