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Cumulant generating functions of a tracer in quenched dense symmetric exclusion processes
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The symmetric exclusion process (SEP), where particles hop on a one-dimensional lattice with the restriction
that there can only be one particle per site, is a paradigmatic model of interacting particle systems. Recently, it
has been shown that the nature of the initial conditions—annealed or quenched—has a quantitative impact on the
long-time properties of tracer diffusion. However, so far, the cumulant generating function in the quenched case
was only determined in the low-density limit and for the specific case of a half-filled system. Here, we derive it
in the opposite dense limit with quenched initial conditions. Importantly, our approach also allows us to consider
the nonequilibrium situations of (i) a biased tracer in the SEP and (ii) a symmetric tracer in a step of density. In
the former situation, we show that the initial conditions have a striking impact, and change the very dependence
of the cumulants on the bias.
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Diffusion of interacting particles under strong confinement
gives rise to anomalous subdiffusive behaviors. This is exem-
plified by single-file diffusion in narrow channels, in which
particles cannot bypass each other and remain in the same
order. For any tagged particle in the system, this typically
leads to a sublinear growth of the fluctuations of positions
〈X 2

t 〉 ∝ √
t [1], in contrast with normal, linear-in-time fluc-

tuations in the absence of confinement or in the absence of
interactions. Such subdiffusive behavior was observed in dif-
ferent contexts, for instance in porous media or in confined
colloidal suspensions [2–7].

The symmetric exclusion process (SEP) is a classical
model of single-file diffusion. In this minimal representation,
a one-dimensional lattice is populated by particles at den-
sity ρ. Each of them performs a symmetric, continuous-time
random walk, with the restriction that there can only be one
particle per site, which represents the hardcore interactions
between particles. It was established that the variance of the
position of a tracer scales as

√
t in the long-time limit, and

the prefactor was determined exactly as a function of the

density: 〈X 2
t 〉 ∼

t→∞
1−ρ

ρ

√
2t
π

[8]. Important developments have

been considered during the past decades [9,10].
First, even though it has been known for long that the

rescaled position satisfies a central limit theorem and con-
verges to a fractional Brownian motion with Hurst index 1/4
[11,12], the long-time expression of the higher-order cumu-
lants was obtained only recently [13]. They were first derived
in the dense limit ρ → 1 [14] and dilute limit ρ → 0 [15–18].
A real breakthrough came in 2017 when Imamura, Sasamoto,
and Mallick derived the full probability law at any density
[19].

Second, while the SEP in its original formulation provides
a model of subdiffusion in crowded equilibrium systems, an
important extension to nonequilibrium situations has been

proposed by considering the general case of a driven tracer in
a bath of unbiased random walks (still with exclusion, Fig. 1).
The mean position [20,21] and all higher-order moments in
the dense limit [14] have been calculated, and shown to grow
anomalously as

√
t . Recent extensions of this model concern

the case of several driven tracers [22] or of a finite system
[23,24]. Note that a similar behavior of the first two cumulants
is found for a symmetric tracer in an inhomogeneous bath,
namely a step of density [19].

Last, recent studies have investigated the sensitivity of
tracer diffusion in single-file systems to the initial conditions.
Indeed, in analogy with the physics of disordered systems, two

FIG. 1. Biased tracer in a SEP with different types of initial
conditions. Different realizations at t = 0 are displayed along the
red axis. The bath particles (gray) perform symmetric random walks
with exclusion. The random walk of the tracer (blue) is biased.
(a) Annealed initial conditions: the initial state of the system is drawn
at random for each realization. (b) Quenched initial conditions: the
initial state is drawn once for all realizations. (c) Deterministic ini-
tial conditions, which is an important example of quenched initial
conditions: the empty sites are equally spaced.
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distinct situations need to be considered. In the annealed case
(implicitly assumed in the results reminded above), particles
are initially distributed according to an equilibrium state of
density ρ. In the quenched case, the initial positions of the
particles are fixed, with the constraint that, at a macroscopic
scale, they correspond to a uniform density ρ. It was shown
that, even if the scaling at long time is the same, the prefactor
of the variance is different for the two settings [25]. This
came as a surprise, since the memory of initial conditions
could naively have been expected to be lost at long time (see,
however, [26,27] for the description of a similar effect in a
different context). Extensions to the calculation of the fourth
cumulant [15], of the covariance 〈X (t1)X (t2)〉 [28], and of
all cumulants in the dilute limit [15,29] have recently been
performed. Additionally, other single-file models [30,31] have
been studied.

However, in the quenched setting, (i) the cumulant generat-
ing function (CGF) of a tracer in the SEP has been calculated
only in the dilute limite ρ → 0 [32]; (ii) nonequilibrium situ-
ations, involving a driven tracer or a step of density, have not
been investigated in spite of their importance.

In this Letter, we derive the full cumulant generating func-
tion of the tracer position in the dense limit of the SEP with
quenched initial conditions. Our approach also allows us to
consider two typical nonequilibrium situations: (i) a biased
tracer in the SEP and (ii) a symmetric tracer in a step of
density (see Supplemental Material [33] for the results corre-
sponding to a combination of both). Strikingly, we show that,
in the former situation, the impact of the initial conditions
is not only quantitative but also qualitative, and their nature
changes the very dependence of the cumulants on the bias.

Model. The system that we study is a biased tracer in the
SEP (Fig. 1). Particles are initially positioned uniformly at
random on the infinite discrete line with a density ρ. Each
particle has an exponential clock of average 1 and when the
clock ticks, the particle chooses to jump either to the left (with
probability 1/2) or to the right (with probability 1/2). If the
arrival site is empty, the jump is performed. Otherwise, it is
canceled.

One of the particles is assumed to be a tracer and to have
different jumping rates: p1 to the right and p−1 to the left.
The tracer is initially at the origin X (t = 0) = 0 and we study
its displacement with time X (t ). Averages over multiple real-
izations of the system can be performed with respect to the
initial conditions (IC) or to the time evolution of the system
(ev). The relative order of the two averages gives rise to two
different settings: quenched and annealed (see Fig. 1). The
annealed CGF is defined as ψ

(t )
A (k) ≡ ln 〈eikX (t )〉IC+ev while

the quenched CGF reads ψ
(t )
Q (k) ≡ 〈ln 〈eikX (t )〉ev〉IC. The cu-

mulants stem from the expansion of the CGF ψ
(t )
A/Q(k) ≡∑∞

n=1
(ik)n

n! κA/Q
n (t ), where κ1 is the average displacement and

κ2 is the variance. Our goal is the determination, in the
quenched setting, of the CGF and the cumulants in the high-
density limit ρ → 1.

CGF in the high-density limit. Let us first consider a one-
dimensional lattice of finite size N in which all the sites are
occupied except M of them. We call these empty sites va-
cancies, and their fraction is M/N = 1 − ρ. The high-density
limit of the SEP corresponds to ρ → 1. Instead of looking

at the motion of the particles, one can equivalently study the
motion of the vacancies, which perform random walks on the
line. For simplicity, we adopt here a discrete-time description:
at each time step, each vacancy moves to a neighboring site.
We will only derive results in the long-time limit, in which
this description becomes equivalent to a continuous-time de-
scription.

When a vacancy crosses the tracer from left to right, the
tracer moves to the left and vice versa. We number the vacan-
cies and call Y j (t ) the displacement of the tracer generated by
the jth vacancy. We have X (t ) = Y 1(t ) + · · · + Y M (t ). The
initial positions of the vacancies are called Zj . P(t )(X |{Zj}) is
the probability of a displacement X at time t knowing the ini-
tial positions of the vacancies. Similarly, P (t )({Y j}|{Zj}) is the
probability that up to time t vacancies induced displacements
{Y j} of the tracer. By definition,

P(t )(X |{Zj}) =
∑

Y1,...,YM

δX,Y1+···+YMP (t )({Y j}|{Zj}). (1)

In the high-density limit (M/N → 0), the vacancies per-
form independent random walks and interact independently
with the tracer. We neglect events of order O[(1 − ρ)2] in
which two vacancies interact with each other, compared to
events of order O(1 − ρ) in which one vacancy interacts with
the tracer. This gives exact results in the limit ρ → 1 [34,35].
We call p(t )

Z (Y ) the probability that, in a system with a single
vacancy initially at Z , the tracer has displacement Y at time
t . We have P (t )({Y j}|{Zj}) ∼

ρ→1

∏M
j=1 p(t )

Z j
(Y j ). Note that there

are only two values of Y for which p(t )
Z (Y ) is nonzero (Y = 0

and ±1 for Z ≶ 0).
Using Eq. (1) and defining the Fourier transform of any

site-dependent function as f̃ (k) = ∑∞
X=−∞ eikX f (X ), we ob-

tain

P̃(t )(k|{Zj}) ∼
ρ→1

M∏
j=1

p̃(t )
Z j

(k). (2)

For self-consistency, we first consider the case in which
the vacancies have equal probability to be on any site (except
the origin). This is known in the literature as annealed initial
conditions. The cumulant-generating function �

(t )
A (k) of X (t )

is the logarithm of the average of P̃(t )(k|{Zj}) on all the initial
positions of the vacancies

ψ
(t )
A (k) ≡ ln

[
1

(N − 1)M

∑
Z1,...,ZM 
=0

P̃(t )(k|{Zj})

]
. (3)

Using Eq. (2), we have, in the limit ρ → 1, P̃(t )
A (k) =

[1 + 1
N−1

∑
Z 
=0 ( p̃(t )

Z (k) − 1)]
M

, which, in the thermodynamic
limit M, N → ∞ with M/N = 1 − ρ constant, leads to

lim
ρ→1

ψ
(t )
A (k)

1 − ρ
=

∑
Z 
=0

(
p̃(t )

Z (k) − 1
)
. (4)

We now turn to the case of quenched initial conditions.
The initial positions of the particles are fixed and one aver-
ages over multiple realizations of the evolution of the system.
The cumulant-generating function conditioned on the initial
positions of the vacancies is ln P̃(t )(k|{Zj}). The quenched
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cumulant-generating function ψQ is then defined as the av-
erage of this quantity over the initial positions

ψQ(k, t ) ≡ 1

(N − 1)M

∑
Z1,...,ZM 
=0

ln P̃(t )(k|{Zj}). (5)

Using Eq. (2), and taking the thermodynamic limit, we
find that the high-density limit of the quenched cumulant-
generating function reads

lim
ρ→1

ψQ(k, t )

1 − ρ
=

∑
Z 
=0

ln p̃(t )
Z (k). (6)

Let us emphasize the difference between Eqs. (4) and (6): in
the annealed case, the CGF is a linear combination of the
single-vacancy propagators, as opposed to the nonlinear de-
pendence of the quenched case. This structure is reminiscent
of the expressions obtained in the opposite limit of a dilute
SEP [29].

Explicit results can be obtained by noting that the gener-
ating function associated with the single vacancy propagator,
defined as ˆ̃pZ (k, ξ ) = ∑∞

t=0 p(t )
Z (k)ξ t , has been determined in

the calculation of the annealed CGF and reads [14]

ˆ̃pZ (k, ξ ) = 1

1 − ξ

[
1 + (eiμk − 1)

1 − f̂−μ(ξ )

1 − f̂1(ξ ) f̂−1(ξ )
f̂Z (ξ )

]
,

(7)

where μ ≡ sgn(Z ) and f (t )
Z is the probability for a vacancy

to reach the origin for the first time at t starting from Z . Its
generating function reads

f̂Z (ξ ) = 1 + μs

1 + μsα
α|Z| (8)

with α = (1 −
√

1 − ξ 2)/ξ and s = p1 − p−1.
Large time limit of the quenched CGF. Taking the scaling

limit ξ → 1 with (1 − ξ )|Z|2 kept constant (corresponding to
the scaling limit t → ∞ with |Z|/√t constant), Eq. (7) leads,
after inverse Laplace transform, to

p̃(t )
Z (k) − 1 ∼

t→∞ pμ(eiμk − 1)erfc

( |Z|√
2t

)
. (9)

Using this result in Eq. (6), the long-time limit of the involved
Riemann sum yields

lim
ρ→1

ψQ(k, t )

1 − ρ
∼

t→∞
√

2t
∫ ∞

0
dz ln{[1 + p1(eik − 1)erfcz]

× [1 + p−1(e−ik − 1)erfcz]}. (10)

This cumulant generating function, derived for a biased tracer
in a high-density SEP, is the key result of our Letter.

Symmetric tracer. We first focus on the situation where the
tracer is symmetric, i.e. p1 = p−1 = 1/2. The CGF [Eq. (10)]
takes the simple form

lim
ρ→1

ψQ(k, t )

1 − ρ

∼
t→∞

√
2t

∫ ∞

0
dz ln

[
1 − sin2

(
k

2

)
erfc(z)erfc(−z)

]
.

(11)

The known cumulants limρ→1
κ

Q
2 (t )

1−ρ
∼

t→∞

√
t
π

and κ
Q
4 [33] are

retrieved [15] (see Fig. S1 in the Supplemental Material [33]
which highlights the difference between the two settings),
but more generally all the cumulants can be deduced from
Eq. (11) by a simple series expansion.

Biased tracer. In the case of a biased tracer (s = p1 −
p−1 
= 0), all the cumulants can be computed from Eq. (10),
and the first three read

lim
ρ→1

κ
Q
1 (t )

1 − ρ
∼

t→∞ s

√
2t

π
, (12)

lim
ρ→1

κ
Q
2 (t )

1 − ρ
∼

t→∞

√
t

π
(1 + s2(1 −

√
2)), (13)

lim
ρ→1

κ
Q
3 (t )

1 − ρ
∼

t→∞ s

√
t

2π

[
6
√

2(3 + s2)

π
arctan

1√
2

− 1 − 3
√

2 − 3(
√

2 − 1)s2

]
. (14)

Several comments are in order: (i) the first cumulant is iden-
tical in the quenched and in the annealed settings [14], as
in the opposite limit of low-density (in which only the first
cumulant was computed [25]). (ii) The identity between odd
cumulants on the one hand and even cumulants on the other
hand, shown in the annealed case [14], does not hold for
quenched initial conditions. (iii) Importantly, there is a strong
impact of the initial conditions on the second cumulant. In-
deed, in the annealed case, it was shown that the variance

is independent of the bias, and reads limρ→1
κA

2 (t )
1−ρ

∼
t→∞

√
2t
π

,

as opposed to Eq. (13). This very striking difference empha-
sizes the importance of the initial conditions of the system
on the long-time dynamics of this nonequilibrium situation,
with both qualitative and quantitative consequences. Agree-
ment with numerical simulations performed with the choice
of deterministic initial conditions (see Fig. 1(c) and the Sup-
plemental Material [33]) is displayed on Fig. 2.

Step of density. Finally, we consider an unbiased tracer in
a step of density, as studied in the annealed case [19,36]. The
density in front of the tracer (resp. behind the tracer) is de-
noted ρ+ (resp. ρ−). The average density is ρ = (ρ+ + ρ−)/2
and we define the step σ = (ρ− − ρ+)/[2(1 − ρ)]. For an-
nealed initial conditions in the high-density limit, it is shown
in the Supplemental Material [33], and in agreement with the
general results of [19], that all odd (resp. even) cumulants are
identical and read

lim
ρ→1

κA
odd(t )

1 − ρ
∼

t→∞ σ

√
2t

π
, (15)

lim
ρ→1

κA
even(t )

1 − ρ
∼

t→∞

√
2t

π
, (16)

Note that the cumulants have the same expression than for
a biased tracer in a homogeneous bath of density ρ if the
substitution s = p1 − p−1 �→ σ is made [14].
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FIG. 2. Cumulants κ
Q
1 , κ

Q
2 , κ

Q
3 of a biased tracer in the quenched SEP at density ρ = 0.95 for biases s = p1 − p−1 =

0.2, 0.5, 0.8, and 1 (blue to red). The numerical simulations (circles) are performed with deterministic initial conditions. We
denote ρ0 = 1 − ρ and we compute the scalings for κ

Q
2 and κ

Q
3 from Eq. (10): f2(s) = [1 + s2(1 − √

2)]/
√

2π and f3(s) =
[6

√
2(3 + s2) arctan(2−1/2)/π − 1 − 3

√
2 − 3(

√
2 − 1)s2]/

√
4π . In the three subfigures, the dashed gray line corresponds to our prediction,√

2t .

For quenched initial conditions, the previous derivation can
be adapted [33], and leads to

lim
ρ→1

ψQ(k, t )

1 − ρ
∼

t→∞
√

2t
∑

μ=±1

(1 + μσ )

×
∫ ∞

0
dz ln

[
1 + 1

2
(eiμk − 1)erfcz

]
. (17)

One striking consequence is that the even cumulants are the
same as those for a tracer in a homogeneous bath whose
effective density is the average of ρ+ and ρ−, as deduced from
Eq. (11).

The odd cumulants are all proportional to the step σ and
the lowest ones read

lim
ρ→1

κ
Q
1 (t )

1 − ρ
∼

t→∞ σ

√
2t

π
, (18)

lim
ρ→1

κ
Q
3 (t )

1 − ρ
∼

t→∞ σ

√
t

2π

[
6
√

2

π
arctan

1√
2

− 1

]
. (19)

We note that while the average displacement κ
Q
1 is identi-

cal to the case of annealed initial conditions [Eq. (15)], the
prefactors of the higher-order odd cumulants are modified.
Last, we compare in Fig. 3 our analytical prediction against
the numerical simulations and again observe a very good
agreement. Finally, we emphasize that the CGF can be derived

in the general case combining a biased tracer in a density step
[33].

As a last observation, we note the strong similarity between
the CGF given by Eq. (11) in the dense regime ρ → 1 and the
CGF derived in the opposite regime of ρ → 0 [15,29]. The
functional dependence of the CGF on ρ in these two regimes
could lead us to propose the following expression for the CGF
at arbitrary density:

ψ
approx
Q (k, t ) ∼

t→∞ ρ(1 − ρ)
√

2t

×
∫ ∞

0
dz ln

[
1 − sin2

(
k

2ρ

)
erfc(z)erfc(−z)

]
.

(20)

The quantitative agreement between the first cumulants com-
puted from Eq. (20) and numerical simulations [33] could
further point towards the exact nature of this expression. How-
ever, even though the second cumulant that could be deduced
from (20) is identical to the exact expression obtained from
macroscopic fluctuation theory [15], this is not true for the
fourth cumulant. Finally, Eq. (20) is exact only in the limits of
ρ → 0 and ρ → 1. The calculation of the CGF with quenched
initial conditions at arbitrary density, that would be the coun-
terpart of the result obtained in the annealed case [19], remains
a challenging open question.

FIG. 3. Cumulants κ
Q
1 , κ

Q
2 , κ

Q
3 of a tracer in the quenched SEP with densities ρ− behind the tracer and ρ+ in front of it. From blue to red,

(ρ−, ρ+) = (0.96, 0.9), (0.98, 0.96), (0.99, 0.95), (0.99, 0.98). The numerical simulations (circles) are performed with deterministic initial
conditions. The gray lines are the predictions deduced from Eq. (17). We denote ρ0 = 1 − ρ.
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