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Abstract – The effect of conformational fluctuations of modular macromolecules, such as en-
zymes, on their diffusion properties is addressed using a simple generic model of an asymmetric
dumbbell made of two hydrodynamically coupled subunits. It is shown that equilibrium fluc-
tuations can lead to an interplay between the internal and the external degrees of freedom and
give rise to negative contributions to the overall diffusion coefficient. Considering that this model
enzyme explores a mechanochemical cycle, we show how substrate binding and unbinding affects
its internal fluctuations, and how this can result in an enhancement of the overall diffusion co-
efficient of the molecule. These theoretical predictions are successfully confronted with recent
measurements of enzyme diffusion in dilute conditions using fluorescence correlation spectroscopy.

Copyright c© EPLA, 2017

Introduction. – The highly precise and efficient func-
tions performed in a biological cell, such as vesicular trans-
port or DNA synthesis, require the conversion of chemical
energy into mechanical work by biomolecules [1–3]. To
this purpose, enzymes and motor proteins perform cyclic
turnovers in which they bind to substrate molecules and
catalytically convert them to products while undergoing
conformational changes, which affect their transport and
diffusion properties. Therefore, the question of whether
a biological molecule is able to produce enough mechan-
ical work to overcome the thermal fluctuations of its en-
vironment is central for the understanding of biological
self-organization and intracellular transport [4–11].

In this context, fluorescence correlation spectroscopy
(FCS) has proven to be a powerful tool to study the
physical properties of macromolecules, such as the
folding/unfolding or denaturation dynamics of pro-
teins [12,13]. Recently, in vitro studies of dilute solutions
of enzyme molecules using FCS have revealed that their
diffusion coefficient is enhanced when they are catalyti-
cally active [14–17]. This phenomenon may contribute to
the self-organization of biological processes such as the
Krebs cycle [18]. The experimental observation holds for
a wide range of enzymes with very different kinetic and
thermodynamic properties. Although it was suggested
that diffusion enhancement could be correlated to the

exothermicity of the reaction catalyzed by the enzyme
or its overall catalytic rate [17,19–21], we have recently
shown that the slow and endothermic enzyme aldolase
could exhibit a similar behaviour [22]. The new observa-
tions cannot be theoretically explained within the existing
nonequilibrium paradigm, and a completely new approach
is required. In this letter, we use a new paradigm to pro-
vide a quantitative description for this phenomenon.

Main results. – We propose a simplified description
for a generic macromolecular complex using the model of
an asymmetric dumbbell, which represents the modular
structure of the macromolecule and which reduces its in-
ternal degrees of freedom to a minimal number (fig. 1(a)).
Considering the hydrodynamic interactions between the
different parts of the enzyme, we show how the internal
degrees of freedom affect its overall diffusion. More pre-
cisely, we show that the effective diffusion coefficient of
the dumbbell has the generic form

Deff = Dave − δDfluc, (1)

where the first term corresponds to the thermal average
of the contributions due to the translational modes of the
dumbbell, whereas the second term represents fluctuation-
induced corrections arising from the internal elongation
and rotation degrees of freedom. The negative sign of the
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Fig. 1: (Colour online) (a) Generalized dumbbell model: two subunits, which represent the modular structure of the enzyme,
interact via hydrodynamic interactions and a harmonic-like potential U . The conformation of the enzyme is described by the
positions of the subunits xα and their orientations ûα. (b) Three-state mechanochemical cycle explored by the enzyme in the
presence of substrate and product molecules: when it is free, the enzyme can bind to a substrate molecule and transform it into a
product molecule which is ultimately released in the bulk. These transformations are assumed to be reversible. (c) Modification
of the extent of elongation fluctuations of the dumbbell due to substrate or product binding. (d) Modification of the orientational
fluctuations upon substrate or product binding.

correction term, which is controlled by the asymmetry of
the dumbbell, is a generic feature of fluctuation-induced
interactions [23].

We then propose a simplified description of the
mechanochemical cycle visited by the enzyme (fig. 1(b)),
and its influence on the fluctuations of the enzyme. Sub-
strate or product binding generically hampers the fluctu-
ations of the modular structure (figs. 1(c) and (d)), and
therefore reduces the fluctuation-induced contribution to
the effective diffusion coefficient. We find that this leads
to a relative enhancement of the diffusion coefficient with
a generic dependence on the substrate concentration S0 of
the form

ΔD

D0
≡ D(S0) − D(S0 = 0)

D(S0 = 0)
= A · S0

S0 + K
, (2)

where K is the effective equilibrium constant of the chem-
ical cycle, and A a numerical prefactor that depends on
the geometrical and physical properties of the enzyme.

Model. – Our goal is to investigate the role played by
solvent-mediated hydrodynamic interactions between the
different parts that constitute the model enzyme. Real
macromolecules generally have a very large number of in-
ternal degrees of freedom. In order to describe their in-
ner dynamics, different types of fluctuation modes are to
be considered, among which compressional modes, that
come from the protein elastic properties, and orientational
modes, that originate from the hinge motion of freely ro-
tating subparts. To study these two types of internal de-
grees of freedom, and in line with previous models of low
Reynolds number swimmers [24–26], we reduce the com-
plex geometry of the enzyme to a simple model molecule

taking the form a generalized dumbbell made of two sub-
units, which are geometrically different and whose shapes
reproduce the modular structure of the enzyme. They in-
teract via hydrodynamic interactions and via a harmonic-
like potential U of stiffness k and equilibrium distance a,
with a short-distance cutoff that accounts for steric con-
straints. Their positions xα and orientations ûα undergo
thermal fluctuations (fig. 1(a)). This simplified model does
not aim to represent a specific enzyme, but will allow us
to carry out a detailed analytical study of the fluctuation-
induced effects that arise from the hydrodynamic cou-
pling. Although this model can be related to previous
attempts to use hydrodynamically coupled dumbbells or
chains to describe the diffusion of polymers [27], the ques-
tion of the internal asymmetries of the dumbbell and of
the role played by orientational fluctuations was generally
left aside, and our approach offers a novel insight in the
fluctuation-induced hydrodynamic coupling between the
dumbbell subunits.

Smoluchowski description. – The starting point of
our analytical treatment is the Smoluchowski equation
obeyed by P (x1,x2, û1, û2; t), namely, the probability to
find subunit α at position xα and with orientation ûα

(fig. 1(a)) at time t:

∂tP =
∑

α,β=1,2

{
∇α · Mαβ

TT · [(∇βU)P + kBT∇βP ]

+∇α · Mαβ
TR · [(RβU)P + kBTRβP ]

+Rα · Mαβ
RT · [(∇βU)P + kBT∇βP ]

+ Rα · Mαβ
RR · [(RβU)P + kBTRβP ]

}
, (3)
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where the hydrodynamic tensors Mαβ
AB describe the in-

teractions between translational (T) and rotational (R)
modes of the subunits [28,29], U(x1,x2, û1, û2) is the
interaction potential between the subunits, and the ro-
tational gradient operator is Rα ≡ ûα × ∂ûα [27]. We
conveniently rewrite eq. (3) using the center-of-mass R =
(x1 +x2)/2 and separation (or elongation) x = x2−x1 =
xn̂ coordinates. We will use the following type of ap-
proximation for any combination of the mobility tensors:
A � a01. This approximation corresponds to the usual
pre-averaging of mobility tensors, which consists in ne-
glecting any off-diagonal terms [30], and which has been
widely used in polymer physics, and is known to have a
wide range of validity [27]. The effect of the subunits
anisotropy, and therefore of the orientation dependence of
the mobility tensors will be the subject of a later pub-
lication. The orientation dependence of the potential U
is assumed to take the simple form U = 1

2k(x − a)2[1 +∑
α=1,2 vα n̂ · ûα + v12 û1 · û2], where the dimensionless

constants vα and v12 characterize the strength of the con-
straints on orientational fluctuations, and vanish for freely
rotating subunits.

Our aim is to calculate the effective center-of-mass dif-
fusion coefficient defined as

Deff = lim
t→∞

1
6

d
dt

∫
R

∫
x

∫
û1

∫
û2

R2P .

A direct attempt to obtain an evolution equation for the
second moment

〈
R2

〉
from eq. (3) yields an unclosed

equation, which includes correlation functions that involve
both the external (R) and internal (x, û1 and û2) de-
grees of freedom. Using eq. (3) to write the evolution
equation of these quantities, one can show that it involves
higher-order correlation functions; therefore, we need an
approximation to close this hierarchy of equations. We
next identify the hierarchy of the characteristic time scales
associated with the different degrees of freedom: from slow
to fast we have the center-of-mass position R, the orien-
tations n̂, û1 and û2, and the elongation x. The elon-
gation relaxation time is indeed τs = ξ/k, where ξ is an
estimate of the friction coefficient of the enzyme, whereas
the rotational diffusion time of the enzyme τr, such that
〈n̂(0) · n̂(t)〉 ∼ exp(−|t|/τr), is of the order of ξa2/kBT .
Forming the ratio between these two characteristic times
yields the dimensionless number τs/τr ∼ kBT/ka2 ∼ δx/a,
which is a measure of the relative deformation of the
molecule due to thermal fluctuations, and which is smaller
than unity.

Guided by this ordering, we average eq. (3) over the ra-
dial coordinate x assuming that the orientations n̂, û1 and
û2 of the dumbbell are fixed. We define the average 〈·〉 =
1
P

∫
dxx2 · P where P =

∫
dxx2P . The resulting equa-

tion satisfied by P(R, n̂, û1, û2; t) is presented in the Sup-
plementary Material Supplementarymaterial.pdf (SM).
The next step of the calculation consists of a moment
expansion of the equation satisfied by P with respect
to the orientation vectors n̂, û1 and û2, which yields

another hierarchy of equations that will need to be ap-
proximated by using a closure scheme for orientational
order parameters [31–33]. This calculation gives the fol-
lowing leading-order expression for the effective diffusion
coefficient (see the SM):

Deff =
kBT

4
〈m0〉

−kBT

6
〈γ0/x〉2

〈w0/x2〉

[
1 −

∑
α=1,2

(
ka2

kBT
vα

)2

Kα

]
, (4)

where we defined the tensors M = M11
TT +M22

TT + 2M12
TT,

Γ = M22
TT − M11

TT and W = M11
TT + M22

TT − 2M12
TT. This

result has the structure of eq. (1), where the negative
fluctuation-induced corrections are controlled by the co-
efficient γ0, which is a measure of the asymmetry of the
dumbbell. Kα is a dimensionless coefficient of order 1,
that depends on the geometry of the dumbbell and that is
estimated to be positive for harmonic-like potentials (see
the SM).

Fluctuation-dissipation theorem. – To validate the
above results, we verify that our treatment of the problem
satisfies the simplest fluctuation theorem, which takes the
form of the usual Einstein relation μeff = Deff/kBT [34],
where μeff is the mobility coefficient of the dumbbell. For
simplicity, we do not consider here the effect of the ori-
entation dependence of the potential U . We assume that
each of the dumbbell subunits is submitted to an external
force f/2 = (f/2)ê where the amplitude f and the unit
vector ê are arbitrary and constant, so that the total force
on the dumbbell is f ê. We aim to establish the equation
satisfied by the probability distribution of R and x in the
presence of an external force and denoted by Pf (R,x; t).
Rewriting eq. (3) as ∂tP = LTP in order to define the
equilibrium Fokker-Planck operator LT, we find that Pf

satisfies

∂tPf = LTPf −
1
4
f∇R · [(M · ê)Pf ]−f∇x · [(Γ · ê)Pf ]. (5)

Following the averaging procedure presented above, where
one can integrate over the radial coordinate x assuming
that the orientation is fixed, we first obtain the equation
satisfied by Pf =

∫
dxx2Pf . Performing again a moment

expansion with respect to orientation of the equation sat-
isfied by Pf , we get a closed evolution equation of the
density ρf ≡

∫
x

Pf as ∂tρf = Deff∇2ρf − μ efff · ∇ρf ,
and find that the effective mobility coefficient satisfies the
Einstein relation given above.

Path-integral formulation. – Given the set of ap-
proximations we used to close the hierarchy of equations
yielded by the orientation moment expansion, the above
calculation only gives the long-time limit of the diffu-
sion coefficient, and does not contain information about
the convergence to this asymptotic result. In order to
get a better insight on the time dynamics of the general-
ized dumbbell, we turn to a path-integral representation
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of the stochastic dynamics [35]. Ignoring for clarity the
effect of orientational fluctuations, the starting point is
the Langevin equation ẋα

i = Mαβ
TT,ijF

β
j +

√
2kBTσαβ

ij ξβ
j

where the contravariant indices (Greek letters) denote the
labels of the particles, and the covariant indices (Latin
letters) correspond to the coordinates. The tensors σαβ

are defined as the “square root” of the mobility tensors
and obey σαγ

ik σβγ
jk = Mαβ

TT,ij . The unit white noise ξα

satisfies 〈ξα
i (t)〉 = 0 and 〈ξα

i (t)ξβ
j (t′)〉 = δijδ

αβδ(t − t′).
The force F α is related to the potential U through
F α = −∇αU . The propagator conditioned on the
starting and arriving points of the dynamics is formally
written as the integral of a constraint, and treated fol-
lowing the Martin-Siggia-Rose treatment of such path-
integrals [36]. We obtain an expression in the form
P ∝

∫ ∏
α Dxα(τ) exp{−S[x1(τ),x2(τ)]}, where the ac-

tion has the simple form

S =
1

4kBT

∫
dτ (ẋα−Mαγ

TTF γ)·Zαβ ·(ẋβ−Mβδ
TTF δ). (6)

Here, the force is F α = −∇αU , and the friction tensors
Zαβ are inverse to the mobility tensors.

Using again the diagonal approximation A � a01 as
well as the pre-averaging of the hydrodynamic tensors,
and changing the variables in the path-integral in order
to use the coordinates x and R instead of x1 and x2, we
obtain the following action:

S =
1

kBT

∫
dτ

〈z0〉
4

Ṙ2 + Sx, (7)

with

Sx =
1

kBT

∫
dτ

[
〈y0〉
16

ẋ2 +
〈ζ0〉
4

ẋ · Ṙ + 〈w0〉U ′2
]

, (8)

where we define Z = Z11 + ,Z22 + 2Z12, Y = Z11 +Z22 −
2Z12, and ζ = Z22−Z11. For a simple harmonic potential
U = kx2/2, the x-dependent part of the action Sx can
be written as the time integral of a quadratic form. After
integration over the paths {x(τ)}, which corresponds to an
integration of the fast degrees of freedom of the dumbbell,
this yields

P ∝
∫

DR(τ) exp
{
− 1

4kBT

∫
dω

2π

ω2|R(ω)|2
μ(ω)

}
, (9)

where we have written the integral over τ in Fourier
space and defined a mobility as μ(ω)−1 = 〈z0〉 −
(〈ζ0〉2ω2/4)G̃(ω), with the Green’s function being G̃(ω) =
(〈y0〉ω2/4 + 〈w0〉k2)−1. We deduce the mean square dis-
placement of the center of mass using the Green-Kubo
relation [37], and find

〈
R2

〉
= 6

kBT

〈z0〉

[
t +

〈ζ0〉2

〈z0〉〈y0〉 − 〈ζ0〉2
t�(1 − e−t/t�

)

]
.

(10)

0.97

0.98

0.99

1

0.001 0.01 0.1 1 10 100 1000

D
e
ff
(t

)/
D

e
ff
(0

)

t/t�

a2/a1 = 1
a2/a1 = 1.2
a2/a1 = 1.4

Fig. 2: (Colour online) Time dependence of the diffusion co-
efficient of the dumbbell as obtained by the path-integral for-
mulation. Deff(t) is rescaled by its initial value Deff(0) and
plotted against the rescaled time t/t� (see text) for different
values of the relative sizes of the protein subunits a1 and a2,
for a1/a = 0.3 and kBT/(ka2) = 0.01. For all plots, we com-
pare the results obtained with the mobility functions written
in the Oseen limit [29] (dashed lines) and for spherical subunits
with higher-order corrections [38] (solid lines).

A time-dependent diffusion coefficient, defined as
Deff(t) = 1

6
d
dt 〈R2〉, is deduced, and relating the aver-

aged resistance tensors 〈z0〉, 〈y0〉 and 〈ζ0〉 to the mobility
tensors (see the SM), we find the following asymp-
totic regimes:

Deff =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
kBT

4
〈m0〉, t 
 t�,

kBT

4

[
〈m0〉 −

〈γ0〉2

〈w0〉

]
, t � t�,

(11)

where the crossover time t� = (〈w0〉k)−1 is the elon-
gation relaxation time. The drop in the diffusion co-
efficient between the two limiting regimes is therefore
−δDfluc = −kBT

4
〈γ0〉2
〈w0〉 , which is in agreement with the re-

sult obtained from the Smoluchowski description of the
dynamics (eq. (4)), where we showed the existence of a
negative correction to the diffusion coefficient of the dumb-
bell due to its asymmetry. We therefore confirm this ob-
servation, and highlight the consistency between the two
treatments of the stochastic dynamics. The full time de-
pendence of the effective diffusion coefficient is plotted
in fig. 2.

Mechanochemical cycle. – When the enzyme is
placed in the presence of substrate molecules, it will go
through a mechanochemical cycle: depending on whether
the enzyme is free, bound to a substrate molecule or
bound to a product molecule, its conformation will fluc-
tuate around different equilibrium states. In other words,
substrate binding and unbinding can strongly affect the
fluctuations of the internal degrees of freedom and there-
fore impact the overall diffusion coefficient of the enzyme,
as unveiled by our simple model. In order to go fur-
ther with this idea, we consider the simplified three-state
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catalytic cycle represented in fig. 1(a): the enzyme binds
to a substrate molecule, and converts it into a product
molecule that is ultimately released. Both steps are as-
sumed to be reversible.

From a conformational point of view, the enzyme then
only exists in two states where it is, respectively, free
or bound, characterized by the potentials Uf(C) and
Ub(C), where C is a high-dimensional vector describing
the conformation of the enzyme. It is straightforward
to show that, within this discrete-state equilibrium pic-
ture, the average of any conformation-dependent func-
tion writes 〈Φ〉 = 〈Φ〉f + f(S, P )[〈Φ〉b − 〈Φ〉f], where f
is a function of the substrate and product concentrations
(see the SM):

f(S, P ) =
S

S + KS
KP

P + KS

+
P

P + KP
KS

S + KP

. (12)

The effective equilibrium constants KS and KP are de-
fined as

KS = KS,0

∫
C e−Uf/kBT∫
C e−Ub/kBT

, (13)

KP = KP,0

∫
C e−Uf/kBT∫
C e−Ub/kBT

, (14)

where KS,0 and KP,0 are the bare equilibrium constants of
substrate and product binding, respectively. We assume
for simplicity that the chemical rates α(S) and δ(P ) de-
fined in fig. 1b are linear functions of S and P , respectively,
with α(S) = α0S and δ(P ) = δ0P . The bare equilibrium
constants then read KS,0 = β/α0 and KP,0 = γ/δ0 (see
the SM).

We must emphasize that this simplified mechanochem-
ical cycle neglects the nonequilibrium step of the reaction
where substrate molecules are actually turned into prod-
uct molecules. The reversible binding and unbinding steps
can indeed be assumed to happen faster than the chemi-
cal step [22,39]. The equilibrium picture we present here is
then valid at any stage of the chemical reaction, whether
the system is in a transient state or has reached chemical
equilibrium. Therefore, the expression of the diffusion en-
hancement presented in eq. (2) is valid both at the early
stages of the reaction, where very few substrate molecules
have been converted into product and where the effective
equilibrium constant is K = KS, and at chemical equi-
librium, where K = (KS + KP)/2 (see the SM). In the
experiments reported in the introduction, FCS measure-
ments are performed on a short timescale right after the
enzyme is placed in the presence of its substrate. Compar-
ing this almost stationary measurement of the early stage
of the reaction with what could be observed once chemi-
cal equilibrium is reached could bring information about
the relative affinity of the enzyme with the substrate and
product molecules, and about the magnitude of the corre-
sponding conformational changes. This will be the subject
of future work.

The diffusion coefficient of the dumbbell is given by
eq. (4), where the averages of the mobility functions are
calculated using the expression above. Since the modifi-
cations due to substrate binding are expected to be rel-
atively small, we can expand the resulting expression in
powers of the relative change in the configuration averages
[〈Φ〉b−〈Φ〉f]/〈Φ〉f and stop at the lowest order, which will
provide us with an expression of the form of eq. (2) for
the relative change in diffusion coefficient, where the di-
mensionless quantity A is a function of various mobility
coefficients in the free and bound states, but not the sub-
strate concentration (see the SM). The simple expression
we obtain for ΔD/D0 is to be compared with previous ex-
perimental measurements. First, the Michaelis-Menten-
like dependence on the total substrate concentration S0

corresponds to the experimental observations that we re-
cently reported [22]. Secondly, since A is constructed as a
ratio between averages of similar quantities, by default we
expect it to be of order unity, which is confirmed by the
measured relative diffusion enhancement A at substrate
saturation (S0 � K), found to be of the order of a frac-
tion of unity.

Conformational changes. – In order to be more
specific, we will finally investigate the consequences of a
number of typical structural modifications on the diffu-
sion coefficient of the enzyme. First, taking the example
of aldolase [39], binding will influence the average confor-
mation by bringing the two subunits closer by a few Å.
This can be incorporated by choosing Uf = 1

2kf(x − a)2,
and Ub = 1

2kf[x − (a − δx)]2, where a is the equilibrium
distance between the subunits (of the order of a few nm),
and where δx represents the typical displacement of the
protein residues between different conformational states
(fig. 1(b)). The substrate molecule may also play the role
of a stiff cross-linker for the protein, and binding is likely
to increase significantly the effective stiffness of the inter-
action potential, that will read Ub = 1

2kb(x − a)2 with
kb � kf. Finally, substrate binding will also affect the
fluctuations of the orientational modes of the dumbbell
through the coefficients vα. Such an effect was for in-
stance suggested for enzymes like urease, which is known
to have a “flap” that is closed when the enzyme is bound
and open otherwise [40].

For concreteness, we now estimate the contribution to
A by the different specific structural modifications of the
enzyme discussed above. We first focus on the compres-
sional modes of fluctuations and on the associated terms
in eq. (4). When the change in the diffusion coefficient
originates from a reduction in the equilibrium distance
between the subunits, we can expand the expression for
A in the limit of small relative deformation (δx 
 a)
and large potential stiffness (kf � kBT/a2) (see the SM)
to find Ac = G · δx/a with the dimensionless parameter
defined as

G = a

[
− m′

0 +
1
6

γ2
0

w0

(
ln

γ2
0

w0

)′ ] [
m0 −

1
6

γ2
0

w0

]−1

, (15)
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Fig. 3: (Colour online) The contribution to the amplitude As

when substrate binding modifies the stiffness of the interaction
potential from kf to kb. In the free state, the potential stiffness
is taken as kf = kBT/a2. The mobility functions are written in
the Oseen limit [29] (dashed lines) and for spherical subunits of
radii a1 and a2 with higher-order corrections [38] (solid lines).
We compare different values of the asymmetry a2/a1, and the
equilibrium length of the potential is such that a1/a = 0.3.

where the mobility tensors are evaluated at the equilib-
rium length x = a (i.e., the configuration averaging has
been implemented). While G is a purely geometric quan-
tity that is typically of order unity, the result shows that
the extent of the average deformation directly controls the
magnitude of A. For the case when the substrate binding
makes the protein stiffer, fig. 3 shows a plot of the rele-
vant factor As as a function of the ratio between the two
stiffnesses kb/kf; we observe that this factor is typically
of order one and that it increases when the two stiffnesses
deviate from one another substantially. We can also find a
closed-form expression in the limit of very large kf and kb

with a finite difference δk as As = H·[kBT/(kfa
2)]·(δk/kf)

where H is a dimensionless coefficient of order unity (see
the SM). Finally, if the orientational fluctuations of the
dumbbell are affected by substrate binding, we can de-
duce the contribution to the relative change of the dif-
fusion coefficient in the simple case where the subunits
are freely fluctuating in the free state (vα = 0) and con-
strained otherwise (vα > 0):

Ar �
kBT

kfa2

∑
α=1,2

vα,f(vα,b − vα,f)Jα, (16)

where Jα are dimensionless coefficients of order unity (see
the SM).

Conclusion. – We have proposed a simple model to
study the effect of asymmetry on the fluctuation-induced
hydrodynamic coupling between the different parts of a
model enzyme. We consider the interplay between its in-
ternal and external degrees of freedom and calculate the
corrections to the overall diffusion coefficient that origi-
nate from the compressional and orientational degrees of
freedom, and that are controlled by the structural asym-
metries of the molecule. This generic model can be used

to describe the mechanochemical cycles explored by en-
zyme molecules when placed in the presence of substrate
molecules. We show how substrate binding and unbind-
ing can lead to diffusion enhancement, and confront our
theoretical predictions to recently published experimen-
tal measurements. Our minimal model, that contains all
the required physical ingredients, completes the existing
theoretical picture that failed to explain consistently the
experimental observations so far.
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