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Abstract
We study diffusion on comb lattices of arbitrary dimension. Relying on the
loopless structure of these lattices and using first-passage properties, we obtain
exact and explicit formulae for the Laplace transforms of the propagators
associated to nearest-neighbour random walks in both cases where either the
first or the last point of the random walk is on the backbone of the lattice, and
where the two extremities are arbitrarily chosen. As an application, we com-
pute the mean-square displacement of a random walker on a comb of arbitrary
dimension. We also propose an alternative and consistent approach of the
problem using a master equation description, and obtain simple and generic
expressions of the propagators. This method is more general and is extended to
study the propagators of random walks on more complex comb-like structures.
In particular, we study the case of a two-dimensional comb lattice with teeth of
finite length.

Keywords: random walks, stochastic processes, diffusion, inhomogeneous
lattice, complex environment

(Some figures may appear in colour only in the online journal)

1. Introduction

Diffusion of particles in systems with geometrical constraints, such as fractal or disordered
lattices, has motivated a large amount of theoretical work in the past decades [1, 2]. This
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question is central in many physical and biological systems, and arises for instance in the
study of transport in porous media, polymer mixtures or living cells.

Comb-like lattices have received a particular interest, as they minimally reproduce the
main features of percolation clusters, or more generally of loopless structures: a line (called
thereafter the backbone) spans from one end of the system to the other, to which finite or
infinite structures (the teeth) are connected. As an example, the simplest two-dimensional
comb structure is obtained from a regular two-dimensional square lattice by removing all the
lines parallel to the x-axis expect from this axis itself. Several extensions of this lattice, such
as combs with teeth of random length or generalized higher-dimensional combs, have been
studied [1].

The simplicity of such lattices makes it possible to derive numerous exact results, among
which the mean square displacement of an isolated random walker [3–6], of a tracer particle
in a crowded environment with excluded-volume interactions [7], first-passage time and
survival probability [8], or occupation times statistics in subdomains of the lattice [9].
Continuous descriptions of comblike structures have also been proposed, and used to study
anomalous diffusion and the influence of drift on the diffusion properties [10–12]. Finally, in
addition to their theoretical interest, comb lattices have been successfully used to model
different real systems, among which we can cite spiny dendrites [13] or dendronized poly-
mers [14].

We will focus here on the propagators associated to the random walk, namely the
probability for a random walker to be at a given site at a given time knowing its starting point.
When the starting and arrival points coincide and are located on the backbone, this quantity
has been computed for combs of arbitrary dimension [15]. On two-dimensional combs, the
propagators of random walks starting from or arriving to the backbone have also been
calculated and studied asymptotically [16, 17]. In this paper, relying on similar methods, we
generalize these results to combs of arbitrary dimension, and obtain the Laplace transforms of
the propagators between arbitrary points of a two-dimensional comb. We also introduce an
alternative derivation of these propagators that relies on a master equation formulation of the
problem, and that yields a surprisingly simple and explicit formula for the propagator that
holds for any starting and arrival points. We finally give a few possible extensions of this
method to other lattices (three-dimensional comb with infinite teeth, two-dimensional comb
with finite teeth). The master equation appears to be a powerful and efficient formulation of
the problem, allowing one to study random walks on generalized comb-like lattices.

The paper is organized as follows: in section 2, we present useful notations and fun-
damental relations that will be used throughout the paper. In section 3, we obtain the pro-
pagators of a random walk on a comb of arbitrary dimension when either the first or the last
point of the random walk is on the backbone of the lattice. As a physical application of this
computation, we also derive the mean-square displacement (MSD) of a random walker along
the backbone of a comb of arbitrary dimension. In section 4, we focus on the two-dimensional
comb and derive the propagators for any starting and arrival points. Finally, in section 5, we
present a master equation description of the problem, which is consistent with the previous
approaches and which allows one to study more complex structures, namely a three-
dimensional comb and a two-dimensional comb with finite teeth.

2. Definitions and basic relations

For any time-dependent function ft , we define the associated generating function (or discrete
Laplace transform) by
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For any space-dependent function y r( ), we define its Fourier transform y k( ) by

åy y= k re , 2
r

k ri( ) ( ) ( )·

where the sum over r runs over all lattice sites. We denote by r rPt 0( ∣ ) the probability for the
random walker to be at site r at time t knowing that it was at site r0 at time 0 (this quantity will
also be called the propagator of the random walk). The associated generating function is then
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Following [18], we call rT ( ) the minimum of the all the time steps (with t=0 included)
where the random walker is at site r. We define the first-passage time density (FPTD) r rFt 0( ∣ )
as

= =r r rF T tProb 4t 0( ∣ ) [ ( ) ] ( )

and deduce the associated generating function x r rF ;0( ∣ ) with equation (1). From the
definition of rT ( ), it is obvious that x = r rF ; 1( ∣ ) for any site r. When ¹r r0, it is
straightforward to establish the following renewal equation, relating the FPTD and the
propagators:

x x x=  r r r r r rP P F; ; ; . 50 0( ∣ ) ( ∣ ) ( ∣ ) ( )

In the particular case where =r r0, the propagator x r rP ;0( ∣ ) may also be related to the first-
passage time densities through [18]:

å
x

x x
=

- ¢ ¢
¢


r r

r r r r
P

F p
;

1

1 ;
, 6

r

( ∣ )
( ∣ ) ( ∣ )

( )

where ¢r rp ( ∣ ) is the probability to jump from r to ¢r in a single time step.
We finally notice that comb lattices are examples of tree-like structures, which means that

for two arbitrary nodes r and ¢r separated by a distance ¢r rd ,( ), there exists only one path of
length ¢r rd ,( ), denoted by g ¢r r,( ). This property implies the following relation [18]:

x x x¢ =   ¢  r r r r r rF F F; ; ; , 7( ∣ ) ( ∣ ) ( ∣ ) ( )

which holds for any site r belonging to the path g ¢r r,( ). In other words, on a loopless
lattice, the Laplace transform of the FPTD of a random walk between two given points can be
decomposed by considering intermediate points belonging to the shortest path between the
starting and arrival points.

3. Random walk on a d-comb

3.1. Definition of the lattice

For d 1, the d-dimensional comb (or d-comb), denoted by Cd , is defined recursively as
follows: Cd is obtained from -Cd 1 by attaching to each site of -Cd 1 an infinite line of integers,
C1 being the one-dimensional regular lattice. Equivalently, Cd can be built starting from a
one-dimensional regular lattice whose sites are attached to the backbone of a copy of -Cd 1.
We represent the 2-comb and the 3-comb on figure 1.
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The d unit vectors pointing out from a backbone site of Cd actually coincide with the
backbones of lower-dimensional combs. We choose the following convention: the unit vector
aligned with the backbone of a copy of Cj will be denoted by ej. Therefore, the direction of
the backbone of Cd coincides with that of the unit vector ed.

3.2. Propagator of a random walk with ending point on the backbone

In this section, we compute the generating function x rP 0 ;( ∣ ) associated to a random walk
with an arbitrary starting point = å =r eri

d
i i1 and arriving at the origin of the lattice (i.e. on the

backbone). Using the renewal equation (equation (5)), we write

x x x=  r rP P F0 0 0 0; ; ; . 8( ∣ ) ( ∣ ) ( ∣ ) ( )

In what follows, we study separately the two generating functions xP 0 0;( ∣ ) and x rF 0 ;( ∣ ).
The generating function x xº G P 0 0;d ( ) ( ∣ ) (propagator with coinciding starting and arrival
points on the backbone) has already been studied and is defined recursively [15]:

x
x

=
+ -

x
-

-

G
d

1

, 9d
d

G

1 2
2

d 1( )
( ) ( )

( )

with x x= -G 1 11
2( ) [19]. The following expression of xG2 ( ) will be used several times

throughout this paper:

Figure 1. The structures of the two-dimensional (top) and three-dimensional (bottom)
combs.
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The generating function associated to the FPTD x rF 0 ;( ∣ ) can be calculated using
equation (7). Decomposing the path from r to 0 as follows

- - - r r e r e e er r r r 0, 11d d1 1 1 1 2 2⟶ ⟶ ⟶ ⟶ ⟶ ( )
we obtain

x x x x= - - - -   r e r e e r e r e rF F r F r r r F r0 0; ; ; ; . 12d d 1 1 2 2 1 1 1 1( ∣ ) ( ∣ ) ( ∣ ) ( ∣ ) ( )

Noticing that the jth step of the decomposed path takes place on the backbone of a j-comb,
defining xfd ( ) as

x xº  ef F 0 ; 13d d( ) ( ∣ ) ( )

and using again equation (7), we get

x x x x=  rF f f f0 ; 14d
r r r

2 1
d 2 1( ∣ ) ( ) ( ) ( ) ( )∣ ∣ ∣ ∣ ∣ ∣
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In what follows, we establish a recurrent definition of xfd ( ). Starting from its definition
and partitioning over the first step of the walk, one writes

x x=  ef F 0 ; 16d d( ) ( ∣ ) ( )

åx x=  w w eF p0 ; , 17
w

d( ∣ ) ( ∣ ) ( )

where we denote by r rp 0( ∣ ) the probability for the random walker to jump from site r0 to site r
in a single step. From site ed, the random walker has d2 neighboring sites on which it may
jump equiprobably, so that we get

⎤
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where we used x =F 0 0; 1( ∣ ) and equation (7) to write x x= eF f0 2 ;d d
2( ∣ ) ( ) . The generating

function x+ e eF 0 ;d j( ∣ ) can be expressed in terms of the xfj ( ) functions by using
equation (7):

x x x+ = +  e e e e e eF F F0 0; ; ; , 20d j d d d j( ∣ ) ( ∣ ) ( ∣ ) ( )

x x= f f . 21d j( ) ( ) ( )

From equation (19), we thus obtain that xfd ( ) is the solution of the following second-order
equation:
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Selecting the solution fulfilling the condition =f 0 0d ( ) , we finally obtain the following
expression:
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Consequently, the generating function xfd ( ) can be computed recursively, starting with the
known expression of x eF 0 ;1( ∣ ) on a one-dimensional lattice [19]:

x
x

x
=

- -
f

1 1
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2
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In particular, for d=2, one retrieves the result previously obtained in [16]:
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x

x x x= + - - - + -f
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Although there is no explicit expression of the functions xfd ( ) that can be deduced from
the recursive definition in equation (23), one can show that the limit of x  1 (i.e. long-time
limit)

x x x= - - + -
x

- -
f 1 2 1 1 . 26d 1

1 1 2 1 2 1 2d d d 1( ) ( ) [( ) ] ( )

Using a Tauberian theorem [19], we then find the long-time expansion of the FPTD

~
G -¥

-

+
eF

t
0

2

1 1 2

1
. 27t d

t d

1 1 2

1 1 2

d

d
( ∣ )

( )
( )

In particular, for d=1, we retrieve the well-known power-law decrease of the FPTD for a
one-dimensional simple symmetric random walk [19]: µ ¥eF t0 1t t1

3 2( ∣ ) .
Finally, the generating function x rP 0 ;( ∣ ) is given by the following relation:

x x x=
=

 rP G f0 ; , 28d
j

d

j
r

1
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where xfj ( ) is defined recursively by equations (23) and (24), and where xGd ( ) is defined
recursively by equation (9) together with the one-dimensional expression

x x= -G 1 11
2( ) .

3.3. Propagator of a random walk starting from the backbone

The propagator x rP 0;( ∣ ) associated to a random walk starting from the backbone can be
deduced straightforwardly from the previous calculation using the following relation, that will
be referred to as the reversibility property [20]:

n
x

n
x¢ =

¢
¢ 

r
r r

r
r rP P

1
;

1
; , 29

( )
( ∣ )

( )
( ∣ ) ( )

where n r( ) is the number of neighbors (or the degree) of site r. More precisely, for a d-comb,
it is given by

J. Phys. A: Math. Theor. 49 (2016) 265001 P Illien and O Bénichou

6



⎧⎨⎩n =
=

Î ¹r
rd

j d r
02 if ,

2 min 1, 0 otherwise.
30

j
( ) { [ ]∣ } ( )

Finally, we find
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where we used the result from equation (28).

3.4. MSD of a random walker

As an application of the result presented in the previous section, we aim to compute the MSD
of a random walker along the backbone of a d-comb. Its Laplace transform is related to the
Fourier–Laplace transform of the propagator (or moment generating function) through the
relation

⎡
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We first compute the Fourier transform of the propagator given by equation (31):
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The sum in the above equation runs over the lattice sites. We split it depending on the values
of the connectivity ν. We denote by j2 the ensemble of the lattice sites whose connectivity is
j2 :
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The Fourier–Laplace transform of the propagators then becomes
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it is straightforward to compute the sums in the rhs of equation (35). Taking
= = =-k k 0d1 1 and derivating with respect to kd, one obtains
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Finally, using the x  1 expansion of the FPTD fj (equation (26)), and deducing from the
recursive definition of Gd (equation (9)) that x x~ -x

-G d2 1d 1
1 2 1 1 2d d( ) ( ) , we finally

obtain the following expansion of xx2⟨ ⟩( ) in the limit of x  1:
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Using a Tauberian theorem [19], we get the long-time limit limit of the MSD of a random
walker along the backbone of a d-comb:
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For a one-dimensional lattice, we retrieve ~x t2
1D⟨ ⟩ [19]. For d=2, we retrieve the result

proved by Weiss and Havlin [3]: p~x t22
2D⟨ ⟩ . The result given in equation (39) indicates

that diffusion along the backbone of a comb is anomalous for d 2, and that the mean-
square displacement along the backbone grows slower and slower when the dimension of the
comb increases. This can be understood as a consequence of the increasing time lost by the
random walker on the structures branched to the backbone, whose dimension and complexity
increase when d increases.

4. Random walk between two arbitrary points of C2

The general situation where the initial or final point of the random walk does not belong to the
backbone of the comb requires more attention. In this section, we will give explicit expres-
sions of the generating functions associated to the generic propagators of a random walk on
C2, and we will consider separately two cases: (i) the situation where the initial and final
points of the random walk (respectively s and r) do not belong to the same half-tooth (i.e.

¹r s2 2 or =r s2 2 and ¹r ssgn sgn1 1( ) ( )), which can be deduced straightforwardly from the
results presented in the previous section; (ii) the situation where the initial and starting points
belong to the same half-tooth.

4.1. First case: r and s do not belong to the same half-tooth

In this section, we deduce from the previous calculations the expression of the propagator
x r sP ;( ∣ ) where r and s do not belong to the same half-tooth. More precisely, this means that

the shortest path from s to r includes at least one point of the backbone (or, equivalently, that
¹r s2 2 or =r s2 2 and ¹r ssgn sgn1 1( ) ( )). Using the renewal equation, we write

x x x= r s r s r rP F P; ; ; . 40( ∣ ) ( ∣ ) ( ∣ ) ( )

We decompose the path from s to r as follows:

s e e rs r 412 2 2 2⟶ ⟶ ⟶ ( )
and use equation (7) to write

x x x x x=   r s r e e e e s r rP F r F r s F s P; ; ; ; ; 422 2 2 2 2 2 2 2( ∣ ) ( ∣ ) ( ∣ ) ( ∣ ) ( ∣ ) ( )

x x x x= -  r e r rF r f f P; ; . 43r s s
2 2 2 1

2 2 1( ∣ ) ( ) ( ) ( ∣ ) ( )∣ ∣ ∣ ∣

The renewal equation between points er2 2 and r yields

x x x=  r e r r r eF r P P r; ; ; 442 2 2 2( ∣ ) ( ∣ ) ( ∣ ) ( )
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and, using equation (31),
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Finally, combining equations (43) and (46), we find the following expression for the generic
propagator x r sP ;( ∣ ):

x
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2 2 1 1( ∣ ) ( ) ( ) ( ) ( ) ( )∣ ∣ ∣ ∣ ∣ ∣

This result can be easily generalized to a d-dimensional comb, in the particular case
where the shortest path between s and r contains at least one point from the backbone (i.e.

¹r sd d or =r sd d and ¹- -r rsgn sgnd d1 1( ) ( )). The propagator of the random walk from s to
r is then given by
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. 48d d
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j

d

j
r s

1

1
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4.2. Second case: r and s belong to the same half-tooth

In the situation where r and s are two distinct points belonging to the same half-tooth, the
path from s to r cannot be decomposed as in equation (41) as it does not contain any point of
the backbone, and the results presented in section 3 cannot be used anymore. With no loss of
generality (using equation (29)), we assume that >s r1 1∣ ∣ ∣ ∣ and >s r, 01 1 . The renewal
equation (equation (5)) yields

x x x=  r s r r r sP P F; ; ; , 49( ∣ ) ( ∣ ) ( ∣ ) ( )

x x= - r rP f; , 50s r
1

1 1( ∣ ) ( ) ( )∣ ∣

where we used equation (7) to obtain the last equality. In what follows we compute the
propagator x r rP ;( ∣ ) associated to a random walk starting and arriving at the same point on a
tooth of the comb. For n 1, we define

x x=  e eU P n n ; . 51n 1 1( ) ( ∣ ) ( )
We relate this propagator to the FPTD using equation (6):

å
x

x x
=

-  e w w e
U

F n p n

1

1 ;
. 52

w

n
1 1

( )
( ∣ ) ( ∣ )

( )

The sum in the denominator can be written explicitly:

⎡
⎣⎢

⎤
⎦⎥åx x x x x= + + -  e w w e e e e eF n p n F n n F n n;

1

2
1 ;

1

2
1 ; , 53

w
1 1 1 1 1 1( ∣ ) ( ∣ ) ( ∣( ) ) ( ∣( ) ) ( )

x
x x= + - e ef F n n

2
1 ; 541 1 1[ ( ) ( ∣( ) )] ( )
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and we deduce the following expression for xUn ( ):

x
x x

=
- +xU

f h

1

1
, 55n

n2 1

( )
[ ( ) ( )]

( )

where we define x xº - e eh F n n 1 ;n 1 1( ) ( ∣( ) ). The previous relation holds for n 1. To
obtain a recurrence relation satisfied by xUn ( ), we use the reversibility property
(equation (29)), which holds for ¹n 1:

x x- = - e e e eP n n P n n1 ; 1 ; . 561 1 1 1( ∣( ) ) (( ) ∣ ) ( )

Both sides of equation (56) are calculated using the renewal equation (equation (5)):

x x x x- = - - -  e e e e e e e eP n n F n n P n n F n n; 1 ; 1 1 ; 1 ;
57

1 1 1 1 1 1 1 1( ∣ ) ( ∣( ) ) (( ) ∣( ) ) (( ) ∣ )
( )

and using the definition of xUn ( ) and xhn ( ), one gets

x x x x= -U h U f . 58n n n 1 1( ) ( ) ( ) ( ) ( )

Using equation (55), xhn ( ) can be written as a function of xUn ( ):
⎡
⎣⎢

⎤
⎦⎥x

x x
x= - -h

U
f

2
1

1
, 59n

n
1( )

( )
( ) ( )

or, equivalently, using the expression of xf1 ( ) (equation (24)) and the relation
x x x- =f f2 11 1( ) ( ), we get

x
x x x

= -h
f U

1 2
. 60n

n1

( )
( ) ( )

( )

Using this relation in equation (58), we obtain the following recurrence relation satisfied by
xUn ( ) which holds for >n 1:

x x x
x

x
= +-U f U

f2
. 61n n1

2
1

1( ) ( ) ( )
( )

( )

To determine xU1 ( ), we use again the reversibility property (equation (29)) to write the
following equations:

x x= e eP P0 0;
1

2
; , 621 1( ∣ ) ( ∣ ) ( )

x x x x=  e e e eP F P F0 0 0 0; ;
1

2
; ; , 631 1 1 1( ∣ ) ( ∣ ) ( ∣ ) ( ∣ ) ( )

x x x x=U h G f
1

2
. 641 1 2 1( ) ( ) ( ) ( ) ( )

Noticing that equation (60) still holds for n=1, we can eliminate xh1 ( ) from equation (64)
and obtain

x x x
x

x= +U G f f
1

2

2
. 651 2 1

2
1( ) ( ) ( ) ( ) ( )

Finally, solving the recurrence relation (equation (61)) with the boundary condition from
equation (65), we get the following explicit expression of x x=  e eU P n n ;n 1 1( ) ( ∣ ):
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x x x
x

x x x= + + -- -U G f f G f
1

2

2
1 . 66n

n n n
2 1

2
1

2 1
1 1

2 1( ) ( ) ( ) ( ) ( )[ ( ) ] ( )( )

This yields the following expression for x r sP ;( ∣ ) when r and s belong to the same half-tooth:

⎧⎨⎩
⎫⎬⎭x x x x

x
x x x= + + -- - - r sP f G f f G f;

1

2

2
1 . 67s r r r r

1 2 1
2

1
2 1

1 1
2 11 1 1 1 1( ∣ ) ( ) ( ) ( ) ( ) ( )[ ( ) ] ( )∣ ∣ ( )

To summarise, relying on the loopless structure of the lattice and using first-passage
properties, we calculated in section 3 the propagators and first-passage time densities of a
random walk whose starting or ending point is on the backbone of the lattice of a comb of
arbitrary dimension. In section 4, we computed the propagators of random walks with
arbitrary starting and ending points on a two-dimensional lattice.

The generalization of this calculation to the case of a three-dimensional comb (or even a
comb of arbitrary dimension) is too complicated to be presented here. We propose in the next
section an alternative and more straightforward calculation of the propagators of a random
walk on a comb, which relies on a master-equation formulation of the problem.

5. A master equation derivation of the propagators

In this section, we write the master equation describing the evolution of the propagators
r sPt ( ∣ ) on a two-dimensional comb. As the comb lattice is not translation invariant, the master

equation will depend on the location of the arrival point r. Relying on the observation that the
comb is an homogeneous lattice with an infinity of particular points arranged along a single
line, we show that the problem is completely described by a set of three master equations,
from which we compute the Fourier transform of the propagator r sPt ( ∣ ) [21]. We are able to
invert these Fourier transforms to retrieve the results obtained in the previous sections, and
show that they are all contained in a single and simple formula.

In a second time, we extend this method to the case of a three-dimensional comb with
infinite teeth and to the case of a two-dimensional comb with teeth of finite length, and
calculate the propagators of a random walk between two arbitrary points of this structure.

5.1. Two-dimensional comb

On a two-dimensional comb, depending on the site r occupied by the walker, there are two
possible sets of probability jumps:

(1) If =r 01 , the walker has a probability 1/4 to jump into each of the directions  e e,1 2.
(2) If ¹r 01 , the walker has a probability 1/2 to jump into each of the directions e1.

In order to simplify the notations, in what follows, we drop the explicit s-dependence of
the propagators and will simply consider rPt ( ) (probability for the walker to be at site r at
time t) with the initial condition:

d=rP . 68r s0 ,( ) ( )

The master equations of the problem are the following:

• for >r 11∣ ∣ :

= + + -+P r r P r r P r r,
1

2
1, 1, , 69t t t1 1 2 1 2 1 2( ) [ ( ) ( )] ( )
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• for =r 11∣ ∣ :

 =  ++P r P r P r1,
1

2
2,

1

4
0, , 70t t t1 2 2 2( ) ( ) ( ) ( )

• for =r 01 :

= + -

+ + + -

+P r P r P r

P r P r

0,
1

2
1, 1,

1

4
0, 1 0, 1 . 71

t t t

t t

1 2 2 2

2 2

( ) [ ( ) ( )]

[ ( ) ( )] ( )

We introduce the following generating functions and Laplace transforms:

 å åx xº
=

¥

=-¥

¥

k P r; e 0, , 72
t r

k r
t

t
b 2

0

i
2

2

2 2( ) ( ) ( )

 å åx xº
=

¥

=-¥

¥
+k k P r r, ; e , . 73

t r r

k r k r
t

t
1 2

0 ,

i
1 2

1 2

1 1 2 2( ) ( ) ( )( )

Multiplying equation (69) by x +et k r k ri 1 1 2 2( ) , summing for t 0 and on every lattice sites, and
using the initial condition (equation (68)), one can show that  and b are related by




x =
x

x

x

+ -

-
k k, ; . 74

k k k

k1 2

e e
2

cos cos ;

1 cos

k s k si 1 1 i 2 2 2 1 b 2

1
( ) ( )

( ) ( )

In order to get an equation satisfied by  xk ;b 2( ), we integrate each side of this equation over
k1 and use the simple relation between  and b:

 òx
p

x=
p

k
k

k k;
d

2
, ; . 75b 2

0

2
1

1 2( ) ( ) ( )

This yields the following equation satisfied by  xk ;b 2( ):

 ò òx
p x

x
x

p x
=

-
+

-
-

p p
k

k

k
k

k k k

k
; e

d

2

e

1 cos 2
;

d

2

cos cos

1 cos
, 76k s

k s

b 2
i

0

2
1

i

1
b 2

0

2
1 2 1

1

2 2
1 1

( ) ( ) ( )

 
x

x
x

x= + -I s k k I k Ie
2

; cos 0
2

; 1 , 77k si
1 b 2 2 b 22 2 ( ) ( ) ( ) ( ) ( ) ( ) ( )

where we define the integral

ò p x
º

-

p
I x

k

k

d

2

e

1 cos
. 78

kx

0

2 i
( ) ( )

This integral is the generating function associated to the propagator of a symmetric nearest-
neighbor random walk between two points of a one-dimensional lattice separated by a
distance x∣ ∣, whose expression is well-known [19]:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟x x

x

x
x

= =
-

- -
I x G f

1

1

1 1
. 79x

x

1 1 2

2

( ) ( ) ( ) ( )∣ ∣

∣ ∣

Using the expression of I x( ) from equation (79) into equation (77), one gets the following
expression for  xk ;b 2( ):
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 x
x

x
=

-
x

k
f

k
;

2 e

cos
, 80

k s s

f

b 2

i
1

1
2

2 2 1

1

( )
( )

( )
∣ ∣

( )

where we used the relation x x x x+ =G f f2 11 1 1[ ( )] ( ) ( ) to simplify the result. Replacing
 xk ;b 2( ) by its expression in equation (74), we get the following expression for  xk k, ;1 2( ):

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥ x

x
x

=
-

+ -
-

x

k k
k

k k
f

k
, ;

1

1 cos
e e cos cos

e

cos
. 81k s k s

k s s

f

1 2
1

i i
2 1

i
1

1
2

1 1 2 2

2 2 1

1

( ) ( )
( )

( )
∣ ∣

( )

In what follows, we invert this Fourier transform with respect to k1 and k2. We do not rename
 for simplicity. The inversion with respect to k1 yields

 òx
x

=
-

p -
r k k

k
, ; e d

e

1 cos
82k s

k s r

1 2
i

0

2

1

i

1

2 2
1 1 1

( ) ( )
( )

⎡
⎣⎢

⎤
⎦⎥ò ò

x
x x

+
- -

-
-

x

p p- -f

k
k k

k
k

k

k

e

cos
cos d

e

1 cos
d

cos e

1 cos
, 83

k s s

f

k r k ri
1

1
2

2
0

2

1

i

1 0

2

1
1

i

1

2 2 1

1

1 1 1 1( )
( )

∣ ∣

( )

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

x
x x

= - +
-

-
x

I s r
f

k
k I r K re

e

cos
cos

1 1
, , 84k s

k s s

f

i
1 1

i
1

1
2

2 1 12 2

2 2 1

1

( )
( )

( ) ( )
∣ ∣

( )

where we define for >a 1∣ ∣ :

ò p
º

-

p -
K a x

k k

a k
,

d

2

e cos

cos
. 85

kx

0

2 i
( ) ( )

This integral can be calculated as a particular case of I x( ) (equation (78)), and one gets:

⎧
⎨⎪

⎩⎪
=

=

¹

- -

-

- -

-

K a x
x

x
,

if 0,

if 0.
86

a a

a

a a a

a

1

1

1

1

x

2

2

2

2

( ) ( )
( )∣ ∣

Therefore, using the expression of I x( ) (equation (79)) in equation (84), we get

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

 x x x
x

x x
x x

= +
-

´ -

x

-r k G f
f

k

k G f K r

, ; e
e

cos

cos
1 1

, . 87

k s s r
k s s

f

r

1 2
i

1 1

i
1

1
2

2 1 1 1

2 2 1 1

2 2 1

1

1

( ) ( ) ( )
( )

( ) ( ) ( )

∣ ∣
∣ ∣

( )

∣ ∣

The inversion of  xr k, ;1 2( ) with respect to k2 yields the following expression for
xP r r, ;1 2( ):

⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

x x x d x x
x

x x
x

= + -

-
- -

-

x x

x

- +

-

P r r G f G f K
f

s r

K r f

, ;
1

,

1 1
,

1

1
, 88

s r
r s

s r

s
f f

s r

f

1 2 1 1 , 1 1
1

2 2

1 1

1 1

1

1 1
2 2

1 1

1
1 1

2

2 2

1
2

( ) ( ) ( ) ( ) ( )
( )

( ) ( )

∣ ∣ ∣ ∣ ∣ ∣

∣ ∣
( ) ( )

∣ ∣

( )
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where we used again the result from equations (78) and (79) to calculate the following
integral:

ò p
º

-
=

- -

-

p -
J a x

k

a k

a a

a
,

d

2

e

cos

1

1
. 89

kx x

0

2 i 2

2
( ) ( ) ( )

∣ ∣

With a simple calculation and using the expressions of xf1 ( ) (equation (24)), xG2 ( )
(equation (10)) and xf2 ( ) (equation (25)), it is easy to show that the following relations hold:

x x x
- =

f G

1
1

2
90

1
2

2( ) ( )
( )

x x
x- - =

f f
f

1 1
1 . 91

1 1
2 2( ) ( )

( ) ( )

The expression of K (equation (86)) also yields:

⎪
⎪

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩x x

x x

x x
=

=

¹
x

K r
G f r

G f r
1 1

,
if 0,

if 0
92r1

1 1 1

1
1 1 11

( ) ( )

( ) ( ) ( )∣ ∣

and

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨⎪
⎩⎪x x

x x x

x x x
- =

=

¹
x

-
K

f
s r

G f r s

G f r s

1 1
,

if ,

if .
93

f
s r

1
2 2

1
2 2 2 2 2

1
2 2 2 2 2

1

2 2( )

( ) ( )

( ) ( )
( )

( )
∣ ∣

Finally, using equations (90)–(93) in order to simplify equation (88), and with simple algebra,
we obtain the following expression for the propagator xP r r, ;1 2( ):

⎡
⎣⎢

⎤
⎦⎥

x d x x x x x x

x
d

x
d

= +

´ + -

- + -P r r G f G G f f

G G

, ;
1

2
1

1
2

, 94

r s
s r s r s r

r r s

1 2 , 1 1 1 2 1 2

1
,0

2
,

2 2
1 1 1 1 2 2

1 2 2

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )
( )

( )
( )

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

where xG1 ( ) was defined in section 3.2, xG2 ( ) is given by equation (10), xf1 ( ) by
equation (24) and xf2 ( ) by equation (25). This expression holds for any starting point and
arrival points. Therefore, we found a single expression that accounts for the different cases we
considered by the renewal approach (see equations (28), (31), (47) and (67)). The master
equation approach then provides a single and compact expression for the propagator
associated to a random walk on C2 with arbitrary starting and arrival points.

In the next section, we show that this method can be extended to study the propagators
associated to a random walk on a two-dimensional comb with teeth of finite length.

5.2. Two-dimensional comb with finite teeth

In this section, we consider a two-dimensional comb and assume that its teeth are finite, so
that Î - r L0, 11 . We assume periodic boundary conditions, such that for any value of r2
the sites r0, 2( ) and L r, 2( ) coincide.

The evolution of the random walker is given by the following master equations:
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• for =r 11 and = -r L 11 :

= + + -+P r r P r r P r r,
1

2
1, 1, , 95t t t1 1 2 1 2 1 2( ) [ ( ) ( )] ( )

• for =r 11 :

= ++P r P r P r1,
1

4
0,

1

2
2, , 96t t t1 2 2 2( ) ( ) ( ) ( )

• for = -r L 11 :

- = + -+P L r P r P L r1,
1

4
0,

1

2
2, , 97t t t1 2 2 2( ) ( ) ( ) ( )

• for =r 01 :

= + -

+ + + -

+P r P r P L r

P r P r

0,
1

2
1, 1,

1

4
0, 1 0, 1 , 98

t t t

t t

1 2 2 2

2 2

( ) [ ( ) ( )]

[ ( ) ( )] ( )

with the initial condition d=rP r s0 ,( ) . We define the following Fourier–Laplace transforms:

 å åx xº
=

¥

=-¥

¥

k P r; e 0, , 99
t r

k r
t

t
b 2

0

i
2

2

2 2( ) ( ) ( )

 å å åx xº
p

=

¥

=-¥

¥

=

-

k k P r r, ; e e , . 100
t r r

L k r
L k r

t
t

1 2
0 0

1 2i
i

1 2

2 1

1 1
2 2( ) ( ) ( )

Multipliying equation (98) by x
p

e et k rik r
L

2i 1 1
2 2, summing over r2 and r1 and using equations (95)–

(97), we obtain the following relation between  and b:




x
x

x
=

+ -

-

x p

p

p

k k
k k

, ;
e e cos cos ;

1 cos
. 101

k s k

L
k

L

1 2

i
2 2

2
b 2

2

k s
L

2i 1 1
2 2 1

1

( )
( )

( )
( )

Noticing that  and b are related through:

 åx x=
=

-

k
L

k k;
1

, ; , 102
k

L

b 2
0

1

1 2

1

( ) ( ) ( )

we can sum equation (101) over k1 to obtain the self-consistent equation satisfied by
 xk ;b 2( ):

  x
x

x
x

x= + -k S s k k S k S; e
2

cos ; 0
2

; 1 , 103k s
b 2

i
1 2 b 2 b 22 2( ) ( ) ( ) ( ) ( ) ( ) ( )

where we defined

å
x

º
- p

=

- p

S s
L

1 e

1 cos
. 104

k

L

k

L

1
0

1

2

k s
L

1

2i 1 1

1
( ) ( )
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In the appendix, we show that the sums S s1( ) can be rewritten as follows:

x
x

x x=
-

+ -S s
G

f
f f

1
, 105

L
s L s

1
1

1
1 1

1 1( ) ( )
( )

[ ( ) ( ) ] ( )∣ ∣ ∣ ∣

where we use again the quantities xG1 ( ) and xf1 ( ) that were defined in section 3.2. From
equation (103) we obtain the expression for  xk ;b 2( ) that we use in equation (101) to obtain
the following expression for  xk k, ;1 2( ):

 x
x x

=
-

+
-

-p

x p

p + -

p

xk k
k

, ;
e e

1 cos

cos cos

1 cos
. 106

k s

k

L

k

L
k

L

S s

S k S
1 2

i

2
2 2

2

2
e

1 1 cos 0

k s
L k s

2i 1 1
2 2

1

1

1

i 2 2 1

2 2

( )
( ) ( )( )

[ ( ) ( )]

We can finally compute the inverse Fourier transform with respect to k1 and k2 and we finally
obtain the Laplace transform of the generic propagator:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

x d
x

x

= - +
¢

-

-
¢

-

P r r S s r
S s S r

S
K

f
s r

S s T r

S
J

f
s r

, ;
0

1
,

0

1
, , 107

s r1 2 , 1 1
1 1

1
2 2

1 1

1
2 2

2 2
( ) ( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( )

( )

where we defined x¢f1 ( ) by
⎡
⎣⎢

⎤
⎦⎥x x x x

x x x
¢

º
+

- + + -

f f G
f f f

1 1

1

2
1 108

L
L L

1 1 1
1 1 1

1

( ) ( ) ( )
( ( ) ) ( ) ( ) ( )

and the sums T r1( ) by

å
x

=
-

p

p
=

-
p-

T r
L

1 e cos

1 cos
. 109

k

L k

L
k

L

1
0

1 2

2

k r
L

1

2i 1 1 1

1
( ) ( )

We present in appendix an explicit calculation of the sums T r1( ), which results in the
following expression:

⎧
⎨⎪
⎩⎪

x x x x

x x
=

+ + + ¹

+ =

x
x

x
x

-
+ - - - - +

-
-

T r
f f f f r

f f r

if 0,

if 0.

110

G

f
r r L r L r

G

f
L

1
2 1 1

1
1

1
1

1
1

1
1

1 1 1
1

1

L

L

1
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Consequently, recalling the expressions of the integrals K (equation (86)) and J
(equation (89)), equation (107) provides an explicit expression of the Laplace transform of
the propagator associated to a random walk between to arbitrary points of a two-dimensional
comb with finite teeth and periodic boundary conditions. It is straightforward to check that
one retrieves the result from the previous section (equation (94)) by taking the limit where
 ¥L in equation (107).

5.3. Three-dimensional comb

We now apply the master equation approach to the case of a three-dimensional comb (see
figure 1). On this structure, three cases can arise depending on the position of the random
walker:

(1) if ¹r 01 , each neighboring site is chosen with the same probability 1/2,
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(2) it =r 01 and ¹r 02 , each neighboring site is chosen with the same probability 1/4,
(3) it =r 01 and =r 02 , each neighboring site is chosen with the same probability 1/6.

The evolution of the propagator rPt ( ) (where the dependence over the starting site s is not
explicitly specified) is then given by the following master equations together with the initial
condition d=rP r s0 ,( ) :

• for >r 11∣ ∣ :

= + + -+ r r e r eP P P
1

2
, 111t t t1 1 1( ) [ ( ) ( )] ( )

• for =r 11∣ ∣ and >r 02∣ ∣ :

= - + ++ r r e r eP P r P r
1

4

1

2
, 112t t t1 1 1 1 1( ) ( ) ( ) ( )

• for =r 11∣ ∣ and =r 02 :

= - + ++ r r e r eP P r P r
1

6

1

2
, 113t t t1 1 1 1 1( ) ( ) ( ) ( )

• for =r 01 and >r 12∣ ∣ :

= + + -

+ + + -

+ r r e r e

r e r e

P P P

P P

1

2
1

4
, 114

t t t
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• for =r 01 and =r 12∣ ∣ :
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• for =r 01 and =r 02∣ ∣ :
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Note that, more generally, a master equation description of a random walk on a d-
dimensional comb would yield a set of +d d 1 2( ) distinct equations.

We define the following Fourier–Laplace transforms:

 ååx x=
=

¥

k rP; e , 117
r

k r

t

t
t

0

i( ) ( ) ( )·
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From the definition of  (equation (117)) and the master equations (equations (111)–(116)),
we obtain the following relation between  , 2 and 3:
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Integrating this relation over the variable k1 and using the relation

 ò x p x=
p

kk k kd ; 2 , ; ,
0

2
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we obtain the following relation between 2 and 3:
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Additionally, integrating this relation over the variable k2 and using
 ò x p x=

p
k k k kd , ; 2 ;

0

2
2 2 2 3 3 3( ) ( ) ( ), we obtain the following closed expression for

 xk ;3 3( ):

⎡⎣ ⎤⎦
 x

x x x x

x x x x
=

- -

x
k

G f J G f s

k G f J G f
;

e ,

1 cos , 0
. 122

k s s

3 3

2 i
1 1 1 1 1

2
3 3

1
2 1 1 1 1

3 3 1

( )
( ) ( ) ( ( ) ( ) )

( ) ( ) ( ( ) ( ) )
( )

∣ ∣

Replacing  xk ;3 3( ) by this expression in equation (121), we obtain the following expression
for  xk k, ;2 2 3( ):
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Finally, the relation between  , 2 and 3 (equation (120)), together with the expressions for
2 (equation (123)) and 3 (equation (122)) yield an explicit expression for the Fourier–
Laplace transform  xk;( ), that can be inverted to obtain a single expression for the
propagator rPt ( ) valid for any starting and arrival points.

Once again, the master equation description appears to be a powerful method as it allows
to compute the propagators of a random walk on a three-dimensional comb.

J. Phys. A: Math. Theor. 49 (2016) 265001 P Illien and O Bénichou

18



6. Conclusion

In this paper, we studied diffusion on comb lattices of arbitrary dimension. More precisely,
relying on the treelike structure of these lattices and making use of renewal equations and
first-passage properties, we computed the Laplace transforms of the propagators (namely the
probability for a random walker to be at a given site at a given time knowing its starting point)
in both cases where the shortest path from the initial to the final point contains at least one
point from the backbone or not. We obtained explicit and closed formulae, valid for comb
lattices of arbitrary dimension.

We then proposed an alternative derivation of these quantities relying on a master
equation of the problem. We obtained the Laplace transforms of the propagators which are
given by a single and simple formula for the case of two-dimensional combs. This method
was then extended to study the case where the teeth of the two-dimensional comb are finite,
and to obtain the Fourier–Laplace transforms of the propagators in the case of a three-
dimensional comb.

The first method allowed us to consider a specific class of random walks on comb lattices of
arbitrary dimension, and obtained generic expressions for the propagators and first-passage time
densities associated to these random walks. The second method is very efficient to study random
walks with arbitrary starting and ending points as long as the dimension of the comb lattice is not
too large. The latter could be used to study more complex random walks on comb-like structures,
that would involve drift, defective sites or finite teeth with reflexive boundary conditions. The
study of such random walks could give a new insight into transport phenomena encountered in
complex and disordered systems of physical or biological inspiration.
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Appendix. Calculation of the sums S ðx Þ and T ðx Þ

In this appendix, we compute the sum S x( ) defined by

å
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- p

=

- p

S x
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1 e

1 cos
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k
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1

2
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Note that S x( ) is symmetric with respect to x. We consider the case x 0 with no loss of
generality. We first rewrite the sum as

å=
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and convert it into a sum over the roots of unity ζ satisfying z = 1L :
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The denominator can be factorized as follows:
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where xf1 ( ) was defined in equation (24) and is the Laplace transform of a FPTD related to a
random walk on an infinite one-dimensional lattice. With a partial-fraction decomposition, we
rewrite S x( ) as
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The sums over the roots of unity are then evaluated using the following relation [22], which
holds for n integer, Î  r n1, and ¹a 1:
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We finally obtain
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where we used the relation x x x x- =f f G1 21 1 1( ) ( ) [ ( )].
The sums T x( ) are evaluated in a similar way. Recalling their definition:

å
x

=
-

p

p
=

-
p-

T x
L

1 e cos

1 cos
, A8

k

L k

L
k

L0

1 2

2

kx
L

2i

( ) ( )

we see that T is symmetric with respect to x and will consider the case x 0 for convenience.
Writing the sum over k as a sum over the root of unity, we get
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Finally, using again equation (A6) and generalizing for any sign of x, we get
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